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ABSTRACT 
We present TapSense, an enhancement to touch interaction 
that allows conventional surfaces to identify the type of 
object being used for input. This is achieved by segmenting 
and classifying sounds resulting from an object’s impact. 
For example, the diverse anatomy of a human finger allows 
different parts to be recognized – including the tip, pad, nail 
and knuckle – without having to instrument the user. This 
opens several new and powerful interaction opportunities 
for touch input, especially in mobile devices, where input is 
extremely constrained. Our system can also identify differ-
ent sets of passive tools. We conclude with a comprehen-
sive investigation of classification accuracy and training 
implications. Results show our proof-of-concept system 
can support sets with four input types at around 95% accu-
racy. Small, but useful input sets of two (e.g., pen and fin-
ger discrimination) can operate in excess of 99% accuracy.  

ACM Classification: H.5.2 [Information interfaces and 
presentation]: User Interfaces - Graphical user interfaces; 
Input devices and strategies.  
General terms: Human Factors 
Keywords: Acoustic classification, tabletop computing, 
interactive surfaces, tangibles, tools, pens, stylus, finger, 
multi-user, touchscreen, collaborative, input. 

INTRODUCTION 
Computers are increasingly featuring direct touch interfac-
es, found in forms as diverse as kiosks and interactive tab-
letops, to tablet computers and handheld mobile devices. At 
present, finger input on touchscreens is handled very sim-
plistically, essentially boiled down to an X/Y coordinate. 
However, human fingers are remarkably sophisticated, both 
in their anatomy and motor capabilities. We can form them 
into many poses and perform a wide variety of gestures.  

We present an enhancement to touchscreen interaction that 
enables identification of the object used for input. Our 
system can recognize small sets of passive tools as well as 
discriminate different parts of the finger – tip, pad, knuckle 

and nail (Figure 1 and 2). The latter is especially valuable 
on mobile devices, where input bandwidth is limited due to 
small screens and “fat fingers” [16]. For example, a knuck-
le tap could serve as a “right click” for mobile device touch 
interaction, effectively doubling input bandwidth. Right-
click-like functionality is currently achieved on touch sur-
faces with fairly unintuitive and un-scalable chording of 
fingers and tap-and-hold interactions. Finally, our approach 
requires no electronics or sensors to be placed on the user. 

RELATED APPROACHES 
Many technologies exist that have the ability to digitize 
different types of input. There are two main touch sensing 
approaches: active and passive. 

The key downside of active approaches is that an explicit 
object must be used (e.g., a special pen), which is imple-
mented with electronics (and batteries if not tethered). For 
example, pens augmented with infrared light emitters on 
their tips can be used on the commercially available Mi-
crosoft Surface [15]. There have also been efforts to move 
beyond pens, including, e.g., infrared-light-emitting brush-
es for painting applications [27]. Current systems generally 
do not attempt to discriminate among different pens (just 
perhaps pen from finger input). Variably-modulated infra-
red light enables identification, but requires specialized 
hardware. Additionally, ultrasonics can be used for input 
localization [19], and can provide pen ID as well. Capaci-
tive coupling in [6,7] allows users or objects to be localized 
and identified, though this requires grounding plates or a 
physical connection to function. 
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Figure 1. TapSense can classify different types of finger input.  

 



 

 

 

Sensing based on electromagnetic resonance operates be-
tween active and passive. Although the tools and tangibles 
need not be powered, they contain a resonant coil that is 
excited by proximate EM fields, generated by the special-
ized tablet they operate on. Although highly capable, in-
cluding the ability to provide ID, table-sized setups are 
prohibitively expensive at present. It is also possible to 
support object identification through a combination of 
RFID and vision processing [20], which offers greater 
scalability. 

Fiducial markers are a truly passive approach. They pro-
vide the ID of an object through a uniquely patterned tag – 
often in a sticker form factor [17,24]. This method has been 
shown to be very capable – the only major drawback is the 
size of the marker, which in general, prevents placement on 
small surfaces like the tip of a pen. Fiducial markers can 
also work in a capacitive-sensing manner [26], allowing 
tags to be embedded in an object. Additionally, the shape of 
an object can be captured optically and used for classifica-
tion (e.g., mice and keyboards in [12]).  

In general, the aforementioned techniques require instru-
mentation of the object providing input, which is a non-
starter for fingers. To side step this, Hambone [5] uses 
wrist-mounted acoustic sensors to classify finger-on-finger 
actions, such as pinching or flicking. Finger taps can also 
be localized on the body through acoustic fingerprinting 
[10]. However, the latter systems require sensors to be 
placed on the user (a key objective of TapSense was that 
users did not need to be instrumented). Without instrumen-
tation, some areas of the finger can be determined through 
computer vision (e.g., pad vs. tip) [16,28]. Using accel-
erometers, soft and hard taps can be discriminated [13]. 

Finally, The Interactive Window Project [21,22] uses time 
of flight to localize touch events on a large pane of glass. 
The work also briefly mentions that frequency distribution 
can be used to classify touch type, such as a finger vs. fist 
bash, an approach seemingly similar to TapSense. Unfortu-
nately, no details are provided about classification or train-
ing. Further, no accuracy results are provided, making the 
system impossible to compare, evaluate, or improve upon.  

SENSING AND PROCESSING 
Our approach is comprised of two key processes operating 
in concert. The first is some method for detecting and 
tracking the position of input, either single- or multi-touch. 
A variety of existing technologies could be used, including 
optical, resistive, and capacitive touchscreens. The second 
component - and the chief contribution of this paper - lis-
tens, segments and classifies impacts on the interactive 
surface using acoustic features. It relies on the physical 
principle that different materials produce different acoustic 
signatures and have different resonant frequencies (Figure 
3). Once a classification has been made, it is paired with 
the last event from the touch surface. 

For acoustic sensing, we use a conventional medical stetho-
scope coupled with an inexpensive electret condenser mi-
crophone, seen in Figure 4 (many microphone technologies 
are suitable, as well as accelerometers). This is affixed to 
the surface of an input-capable display. This setup resem-
bles [11], which uses the same sensor and also takes ad-
vantage of (solid) surface acoustic transmission, albeit with 
a different objective (gesture recognition on ad hoc surfaces 
vs. tip recognition on touchscreens). 

When an object strikes the surface, an ensemble of mechan-
ical vibrations propagate outward through the material. 
Typically, interactive surfaces use rigid materials, such as 
plastic or glass, which both quickly distribute and faithfully 
preserve the signal. As demonstrated in [10,21] (also pas-
sive acoustic based), the strength of taps does not need to 
be great. Indeed, one needs to tap no harder than required 
to type on a keyboard. 

A key property of this approach is that items striking the 
surface do not require active components. Input objects are 
simply composed of different materials and are entirely 
passive.  

Segmentation of input signals is straightforward. Stetho-
scopes naturally provide a high level of environmental 
noise suppression. This allows impacts to be readily seg-
mented from any background noise with a simple ampli-
tude threshold. Once the audio data for the impact has been 
captured, our software processes it, extracting a series of 
time-independent acoustic features.  

We recommend sampling at 96KHz, using a sliding win-
dow of 4096 (the first 43ms of impact signal). An Fast 
Fourier Transform (FFT) of this window produces 2048 
bands of frequency power; we discard all but the lower 500 
bands, representing the acoustic power from 0 to ~10kHz 

 
Figure 3. Spectrograms of our four finger input types. 

 

 

Figure 2. Different parts of the finger can be identi-
fied for use on touch surfaces. 

 



 

 

 

(though the lower 1kHz is the most expressive; see Figure 
3). We then down-sample this data into an additional vector 
of length 50 (i.e., buckets of ten), providing a different 
aliasing. We also include the average absolute amplitude, 
total absolute amplitude, standard deviation of the absolute 
amplitude, and center of mass for both the segmented input 
signal and the FFT (8 features). Lastly, we also calculate 
the fundamental frequency of the impact waveform. These 
features are largely based on those employed successfully 
in Skinput [10], which used a similar acoustic approach for 
localizing inputs on the skin. 

This process yields 559 features, on which we rely for 
classification. We use a support vector machine (SVM) 
implementation provided by the Weka Machine Learning 
toolkit [9] (SMO; polynomial kernel with default parame-
ters). A full description of SVMs is beyond the scope of 
this paper; see [3] for a tutorial (note: as will be discussed 
in more detail later, before the classifier can be used, it 
must first be trained on each class’ acoustic signature).  

Once a classification has been made, the resulting type is 
used to label an unassigned input point (digitized by one of 
many touch sensing technologies and reported to our soft-
ware). This matching process could be done several ways – 
we found selecting the input event with the closest onset 
timestamp was sufficient. The entire classification process, 
starting from the onset of impact, can occur in approxi-
mately 100ms, allowing for real-time interaction. 

In practice, this method appears to work fairly well, and 
enables several users with multiple input objects to work on 
a common surface simultaneously. However, there is one 
special case where this process breaks down and for which 
there is no immediate solution – timing collisions. In par-
ticular, if two objects strike the surface in sufficiently close 
temporal proximity, their acoustic signals will not be seg-
mented separately, and therefore not allow for accurate 
classification.  

The duration of this period is defined by four factors: 1) the 
aggressiveness of the segmenter (because we use time-
independent acoustic features, classification could poten-

tially use e.g., the first 10ms of audio), 2) the resonant 
frequencies of the impact material (lower frequencies take 
longer to dissipate), 3) the dampening of the surface (to 
dissipate previous impacts) and 4) the size of the surface 
(more mass takes longer to dampen). With a carefully se-
lected input set (almost exclusively materials with higher 
frequency resonance), a safe separation between impacts 
could be roughly 300ms on a large surface, such as a table 
or wall.  

An alternative solution is to employ sophisticated algo-
rithms that can localize impact sounds and separate them 
into distinct acoustic waveforms [1]. Although this is gen-
erally applied to environmental noises, such as speech, the 
principles should also apply to touch surfaces. 

Fortunately, this issue is mostly moot on mobile devices, 
which, due to their small size and light weight, quickly 
diminish acoustic energy. Taps can occur as close as ~50ms 
apart on our mobile setup. Furthermore, mobile devices 
typically have a single user. This almost entirely eliminates 
the possibility of simultaneous impacts (the fastest the 
authors could double finger tap was 66ms - achieved in a 
contrived way). 

PROOF-OF-CONCEPT SETUPS 
To evaluate the scalability of our approach and better con-
sider fruitful application areas, we constructed two proof-
of-concept, TapSense-augmented, interactive surfaces: a 
hand-held mobile device and a full-sized multitouch table.  

Mobile Device 
To evaluate the performance of our approach on handheld 
devices, we instrumented an Apple iPod Touch (Figure 4). 
We use the iPod’s 7.6 x 5.1 cm capacitive screen for input 
tracking. We connect our acoustic sensor to a conventional 
computer, which also runs our classifier and interface de-
mos. To provide a graphical interface on the iPod, we simp-
ly VNC to the aforementioned computer. Although intro-
ducing some latency, this afforded us a common code base 
for our mobile device and multitouch table, enabling faster 
prototyping.  

In a real product, a small microphone would likely be cou-
pled to the screen at the cost of a few tens of cents. It may 
even be possible to use built-in microphones found in e.g., 
mobile phones. During early prototyping, it appeared that 
commercial devices applied various software/hardware 
filters for superior voice capture and ambient noise sup-
pression, which degraded performance in the acoustic space 
we wished to use. However, with raw access to a device’s 
microphone, it seems likely TapSense could be enabled 
with no additional hardware. Finally, it may be possible to 
realize superior sensing resolution through the use of mul-
tiple microphones [21,22].  

Multitouch Table 
We also built a tabletop multitouch setup (Figure 4) to 1) 
evaluate how TapSense scaled to larger surfaces, 2) consid- 

Figure 4. Chief components of our two prototype setups. 
 



 

 

 

er collaborative applications (i.e., several collocated users), 
and 3) explore the uses and performance of handheld tools.  

The tabletop surface consists of a 110 x 75 cm frosted glass 
sheet that provides a diffuse surface for both diffused illu-
mination sensing [18] and graphical projection. In brief 
testing, plastics such as acrylic and polycarbonate appear to 
work just as well acoustically – we chose glass because of 
availably, low cost, and scratch resistance. Furthermore, the 
technique should function on curved or irregular interactive 
surfaces (e.g., [2]).  

To create a table-like form factor, the glass surface is sup-
ported by a simple metal frame. To reduce undesirable 
chattering, the glass is supported on the frame by several 
rubber nubs. This also helped to isolate the touch surface 
from the support members and dampen mechanical energy 
from impacts. We centered our acoustic sensor above the 
interactive area, though many placements are possible.  

FINGERS 
Contemporary interactive surfaces generally treat finger 
touches as a single class of input (a partial exception to this 
is [16], which captures a high-resolution fingerprint image 
to infer the 3D “posture” of a finger; area of contact via 
optical sensing is used as an extra input dimension in 
[4,28]). However, this is a gross simplification - fingers are 
diverse appendages, both in their motor capabilities and 
their anatomical composition. Indeed, a single digit con-
tains one major and two minor knuckles, a boney tip, a 
fleshy pad, and a fingernail – most of which can be readily 
discriminated by our acoustic approach. This ability to 
identify which part of the finger was used for input is 
unique to our system. Supporting additional dimensions of 
finger input has largely been ignored because instrumenting 
the user with active or passive components is invasive.  

This approach has the potential to mitigate two significant 
problems faced in touch interaction: 

1) Finger Overloading: At present, in order for a finger to 
perform different operations at a single point in space, it 
must be overloaded, typically triggered by a tap-and-hold 
period or chording of the fingers (e.g., two-finger-tap for 
right click). This often then triggers a transient contextual 
menu, which allows a user to select one of several actions.  

The power of contextual menus could be easily coupled to 
a finger “right click” (e.g., knuckle tap). The conventional 
finger pad tap could then operate as usual (selection, open-
ing, dragging). The value of mice with two buttons is clear 
in desktop-class interaction. TapSense immediately enables 
this (and several additional click types) for touch screen 
input, with no user instrumentation. Figure 5 illustrates a 
simple sequence (see Video Figure for extended examples). 

2) Breaking Out Functionality: An alternative to finger 
overloading is breaking functionality out into one or more 
buttons – for example, a button for minimizing a window 
and another for closing it. However, this is problematic for 
mobile devices with limited screen real estate.  

TapSense offers a solution that entails no buttons. For ex-
ample, the finger pad could operate as usual. However, a 
finger nail tap anywhere on the surface could trigger a 
minimization or “go back” action. Window maximization 
or “go forward” could be done similarly with a knuckle tap.  

Example Finger Applications 
TapSense is an enabling technique that can be used in a 
wide variety of application domains and use contexts. To 
help motivate our approach and underscore its utility, we 
developed several example applications we believe to be 
particularly interesting. 

Soft keyboards on mobile devices are particularly problem-
atic – there are many keys that need to be provided and 
very little space. In response, keyboards are typically bro-
ken up into several “pages” of keys, toggled with modal 
buttons. Not only does this add extra clicks to typing inter-
actions, but also further crowds the small screen. 

As a demonstration, we developed a TapSense-augmented 
soft keyboard that aimed to alleviate some of these prob-
lems. It features two key sets that operate in parallel, seen 
in Figure 6. To type a primary character, users can use their 
finger pad as usual. To type an alt character, a finger tip is 
used. Thus, users have access to the entire character set 
without having to switch pages. To backspace, the user can 
nail tap anywhere on the screen (i.e., no button necessary).  

Another application we developed was a simple painting 
interface. To draw freehand, the user simply uses their 
finger pad like a brush. To draw line segments, a user tip 

   
Figure 5. Left: a directory of files; items can be opened or dragged using the traditional finger pad tap. Center: user  

alt-clicks a file with a knuckle tap, triggering a contextual menu. Right: User pad taps on the print option. 

 



 

 

 

taps the screen and then drags to a desired location. To 
undo the last stroke, users can nail tap anywhere on the 
screen. This, like our keyboard demo, illustrates a simple 
way to remove modal buttons from the interaction and push 
this complexity to our highly dexterous fingers. Other in-
teractions could involve rapid switching between tools 
(e.g., fill tool, erase tool) and modes (e.g., brush thickness, 
opacity, color). 

Leveraging Existing Finger Behaviors 
It is interesting to note that humans use different parts of 
their fingers in different ways – to scratch an itch, type on a 
keyboard, tap a co-worker on the shoulder, or knock on a 
door. With careful design, it may be possible to leverage 
these norms such that existing finger behaviors could be 
ported to and made relevant in digital domains.  

For example, consider a system where a knuckle “knock” is 
used to open files or applications. A tap with the tip of the 
finger (i.e., poke) could be used to bring something to at-
tention, perhaps maximized or given focus, whereas a fin-
gernail “flick” could be used to minimize or delete an item. 
This functionality could operate in harmony with conven-
tional finger-driven interfaces, which tend to rely on finger 
pads for pointing and “clicking”.  

PENS, POINTERS, STAMPS AND TOOLS 
Humans have remarkable dexterity with handheld tools 
and, unsurprisingly, numerous research projects have intro-
duced physical manipulators to interactive systems (see 
e.g., [14,15,17,23,25]). These often come in the form of 
pens, pointing devices, stamps (e.g., for instantiation) and 
miscellaneous tools (e.g., dials, sliders, guides).  

Such items could easily incorporate acoustically-distinct 
materials, and be made small and pointy, like real pens and 
pencils. These would be extremely durable and inexpensive 
to mass produce. To accompany our multitouch table setup, 
we built a set of input objects, shown in Figure 7. These are 
simply different materials glued to the heads of dry erase 
markers, and were not specially engineered to achieve top 
performance.  

Having even a small set of input objects could be valuable. 
For instance, painting applications on conventional interac-
tive surfaces typically use a palette-based color mode selec-

tion. When a color is chosen, all users are forced to switch 
to this color. However, our system allows multiple users to 
pick up one of several color “brushes” and use them simul-
taneously (Figure 8). We also created a tool with different 
materials on each end, which could be used to draw and 
then flipped around to erase, like a pencil. 

Another possibility is to assign users uniquely identified 
input tools. This would allow actions on a system to be 
attributed to a particular person (Figure 8) – a capability 
shared with [7]. This could be used for e.g., collaborative 
document editing, individualized undo stacks, and 
read/write permissions; see [8] for more complete discus-
sion of techniques for collaboration in shared workspaces.  

EVALUATION 
To understand the feasibility and accuracy of our approach, 
we collected data from 18 participants. Nine participants 
(four female) completed the study on our prototype mobile 
device, and another nine participants (five female) com-
pleted the study using our multitouch table setup. Partici-
pants were paid $10 for their involvement. 

For the mobile device, we evaluated an input set comprised 
of four finger locations: pad, tip, knuckle and nail (Figure 
2). Two participants had long nails that prevented them 
from tapping with the boney tip of their fingers. No special 
changes were made for these users – they were simply 
allowed to tap using the tip of their nail (i.e. perpendicular 
to the touch surface, distinct from the nail tap, which re-
quired the hand to be palms-up). Anecdotally, users had no 
trouble performing these different taps, perhaps because 
they leverage existing finger behaviors (see section on left). 

   
Figure 8. Left: tools representing different “brush” colors 
allow several users to paint simultaneously, without color or 
mode switching. Right: unique pens could allow interactive 
surfaces to identify which user was performing what action. 

 

 

 
Figure 6. Our TapSense-augmented soft keyboard. 

 

 
Figure 7. Finger and six tools with different materials af-
fixed to their tips. Left to right: finger, polycarbonate nub, 
wood knob, acrylic ball, metal screw, ping-pong ball, foam. 

 



 

 

 

As an additional, fifth input type, we used an iPod compat-
ible capacitive stylus (which uses conductive foam inside). 
Styli, although increasingly uncommon in mobile devices, 
have attractive qualities for some interactive applications 
[14,15]. For these applications, it would be useful to dis-
criminate between finger and pen input. 

For our multitouch table, two input sets were evaluated: our 
four finger types (tip, pad, knuckle and nail – Figure 2) and 
seven input tools (Figure 7). The finger was included in the 
latter tool set since it is unlikely an interactive surface 
would want to give up finger discrimination capability, 
even if several tools were present.  

For each input type, participants were asked to provide ten 
taps to different locations on the screen. Participants com-
pleted this sequence four times, going through all input 
types first, before looping back around to complete the next 
round (this ensured better temporal independence). This 
produced 40 data points per input type. Although our clas-
sifier would likely benefit from additional training data, we 
found user boredom and fatigue became problematic in 
longer study durations. Thus, results presented in this paper 
should be considered as an accuracy lower bound. 

This procedure produced, per participant, 200 data points 
for the mobile input set, 160 data points for the table finger 
set, and 280 data points for the table tool set. In total, 5760 
tap events were collected.  

RESULTS 
The central questions we sought to answer in our evalua-
tion were 1) the accuracy of our approach and 2) how large 
of an input set could be supported with this acoustic ap-
proach. To assess this, we purposely created input sets 

larger that what we believed our system could accurately 
classify. This allowed us to post-hoc prune down the input 
sets to analyze how performance would improve. Ultimate-
ly, this procedure allows a size of set vs. accuracy balance 
to be identified.  

We evaluated the classification performance of the mobile 
input set at four different sizes: 5, 4, 3, and 2 input types. 
The process was initiated by including all five input types. 
In each subsequent round, we removed the input type with 
the least accuracy (i.e. highest confusion). The only loca-
tion not allowed to be eliminated was the finger pad, as this 
was the standard pointing modality. The same procedure 
was used for the table finger set (4 types) and the table tool 
set (7 types). In the table tool set, the finger was not al-
lowed to be eliminated; likewise for pad location in the 
table finger set. 

Ten-Fold Cross Validation  
To get a general sense of our system’s performance, we 
conducted a conventional ten-fold cross-validation using all 
of our data (1800, 1440 and 2520 data points for the mobile 
input set, table finger set and table tool set respectively). 
However, this statistic tends to be generous, since train and 
test data sets can contain points from the same user and 
points adjacent in time (which will naturally tend to be 
more similar). Nonetheless, it provides a good baseline - 
this result is illustrated in Figure 9. 

Per-User Classifiers 
To better understand how our system would perform in the 
real world, we assessed the accuracy of user-specific classi-
fiers. Specifically, we trained the SVM on three rounds of a 
user’s input data, and tested on the fourth. We evaluated all 

  
Figure 9. Classification accuracy results for input sets of different sizes. Three classification approaches are evaluated. 

 

       
Figure 10. Left & middle: accuracy results using a general classifier. Right: accuracy results using a per-user classifier.  

The volume of training data was varied to see how performance was affected. 

 

 



 

 

 

train/test combinations, and averaged the results per user 
(i.e. four-fold cross-validation). After computing this accu-
racy measure for our participants, we combined the means 
(see per-user plots in Figure 9).  

Using all five types, the mobile input set achieves an accu-
racy of 88.3% (SE=1.7%). The tip type was the worst per-
forming in the set, contributing 47.2% of the misclassifica-
tions. Anecdotally, the tip location appears to be the least 
well defined among users (compared to e.g., the knuckle), 
leading to higher variance. When tip is removed, accuracy 
jumps to 94.7% (SE=1.1%). A set containing just finger 
pad and the stylus achieves an average classification accu-
racy of 99.4% (SE=0.3%), or roughly one error in every 
200 taps.  

Turning to the table finger set - classification accuracy 
when using all four finger input types stands at 86.3% 
(SE=3.1%). As with the mobile device, tip is the worst 
performing; accuracy jumps to 94.0% (SE=1.4%) once tip 
is eliminated. Pad and nail are the best performing pair, 
with an average accuracy of 97.7% (SE=0.7%). Of note in 
the table tool set, finger and pen - perhaps the most com-
mon mixed-use modality (see e.g., [14,15]) - achieves 
99.7% accuracy (SE=0.2%). 

General Classifier 
In this analysis, we evaluate system performance without 
per-user classifiers. In essence, we are simulating “walk 
up” users and estimating their performance without any 
training for that particular individual. We achieve this by 
combining data from eight users into a single aggregate 
training set, and then use a ninth user as the test (all combi-
nations, i.e. nine-fold per-user holdout cross-validation).  

Favorably, in the case of the table tool set, performance is 
as good as classifiers trained on a specific user (1% or less 
loss of accuracy at four or fewer items, well within statisti-
cal variation). This suggests the most important classifica-
tion features are user-independent, and that the acoustic 
features of the objects are most influential.  

This result was less true for the two finger-centric input 
sets. Given that different users have different fingers, it is 
not surprising per-user models would yield better results 
than a general classifier (per-user models also make more 
sense with mobile devices, as there is more opportunity and 
need to personalize to a single user). On average, the mo-
bile input set and the table finger set saw their performance 
drop 12.1% compared to the per-user classifiers. However, 
this performance gap is mostly closed by the time the input 
sets have been reduced to just pad and nail; with 96.8% 
(SE=1.2%) and 97.8% (SE=1.5%) accuracy for the mobile 
input set and table finger set respectively (vs. 97.7%). The 
general classifier plots in Figure 9 illustrate the above accu-
racy results. 

Volume of Training Data 
A central question when building systems using machine 
learning is how much data is needed for training before 

accuracy levels off. In other words, where is the point 
where more training data is of marginal benefit? As an 
initial estimation of this point in our system, we analyze 
data from our worst-performing table setup. 

We trained our classifier on incrementally larger sets of 
data, starting from 40 randomly selected instances per input 
type to 320. Our full data set is 360 points per type, but we 
withheld 40 points, all from a random single user, to serve 
as the test set on each fold. For each size input set, we did 
folds for every combination of users. This procedure en-
sured a single user’s data was either in the test set or train 
set, but not both – allowing for a fair evaluation and num-
bers comparable to our general classifier results. Figure 10 
(left and center) contains accuracy plots for each input set 
size in the table’s tool and finger modalities.  

The table tool set results suggest sets of two or three plat-
eau rapidly, with perhaps only 200 data points needed for 
training. However, for tool sets of four or larger, no plateau 
is reached. The trajectory is clearly upward even when the 
classifier is utilizing our full data set for training (320 
points). Thus, more training data may further improve 
accuracy. With thousands of training instances provided by 
a wide variety of users, it is conceivable our full tool set of 
seven types could operate at useable accuracies. 

A different effect is seen with the table finger set. General 
classifier accuracy improves by an average of 6.0% from a 
training set of 40 to 80, but only another 6.1% from 80 to 
320 data points. Unlike the table tools set results, however, 
the upward trajectory is modest. Expanding from 280 to 
320 training instances improves accuracy a mere quarter of 
a percent on average. These results paint a clear picture: a 
general classifier using our current table setup and software 
implementation would seem unlikely to ever support finger 
sets above two – at least not at accuracies above 90%. 

These results directly support our earlier hypothesis - that 
per-user classifiers are most appropriate (and ultimately 
needed) for finger-centric input sets. If we repeat our train-
ing volume analysis using a per-user classifier, the results 
are notably different (Figure 10, right). Ten random in-
stances are used as the test set, leaving at most 30 instances 
for training. Foremost, even with remarkably small training 
sets - five instances per finger type - accuracies start above 
80% with four finger input types. This compared to below 
50% accuracy with a general classifier using 40 training 
instances from random users. With 30 training instances (a 
very small training set by any measure), accuracies exceed 
90% for table finger sets of 2, 3 and 4 types.  

Even more encouraging, perhaps, is the fact that the table 
finger set with four input types looks to have a strong and 
consistent upward trajectory (Figure 10, right). It seems 
likely our full input set (tip, pad, knuckle and nail) could 
achieve 95%+ accuracies if users supplied several hundred 
or more training instances. This would not be unreasonable 
if a setup is deployed in the home or workspace.  



 

 

 

CONCLUSION 
In this paper, we have presented our acoustic-based input 
classification approach called TapSense. It relies on the 
unique acoustic signatures different objects create when 
striking a touch surface. A support vector machine is used 
to classify impact instances using a series of time-
independent acoustic features. Software then pairs the re-
sulting classification with an input event tracked by a varie-
ty of possible digitizing technologies. A distinguishing 
feature of our approach is its ability to classify different 
types of finger input – specifically the pad, tip, knuckle and 
nail – opening new interaction opportunities for touch sur-
faces, especially those with limited surface area. Our user 
study showed the technique is immediately feasible, with 
accuracies in excess of 95%. 
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