

An Architecture for Generating Interactive Feedback in
Probabilistic User Interfaces
Julia Schwarz, Jennifer Mankoff, Scott E. Hudson

Human-Computer Interaction Institute
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

{julia.schwarz, jmankoff, scott.hudson}@cs.cmu.edu

ABSTRACT
Increasingly natural, sensed, and touch-based input is being
integrated into devices. Along the way, both custom and
more general solutions have been developed for dealing
with the uncertainty that is associated with these forms of
input. However, it is difficult to provide dynamic, flexible,
and continuous feedback about uncertainty using traditional
interactive infrastructure. Our contribution is a general ar-
chitecture with the goal of providing support for continual
feedback about uncertainty.

Our architecture is based on prior work in modeling uncer-
tainty using Monte Carlo sampling, and tracks multiple
interfaces – one for each plausible and differentiable se-
quence of input that the user may have intended. Important-
ly, it considers how the presentation of uncertainty can be
organized and implemented in a general way. Our primary
contribution is a method for reducing the number of alter-
native interfaces and fusing possible interfaces into a single
interface that both communicates uncertainty and allows for
disambiguation. We demonstrate the value of this result
through a collection of 11 new and existing feedback tech-
niques along with two applications demonstrating the use of
the feedback architecture.

INTRODUCTION
Recognition-based input technologies such as speech, touch
gesture, and in-air motion are becoming increasingly preva-
lent. Unfortunately, these technologies are inherently uncer-
tain, which violates a core assumption of most modern in-
terface systems: that input is unambiguous. Prior work has
both demonstrated the benefit of treating inputs probabilis-
tically [3, 8, 11, 21], and proposed systems for integrating
uncertainty while maintaining an architecture similar to
conventional dispatch systems [18]. However, a system is
needed for communicating this uncertainty back to the user.

This paper contributes a general architecture for tracking
interface alternatives arising from varying interpretations of
input, reducing the number of alternative interfaces to a few
representative examples and fusing those possible interfaces
into a single interface that dynamically communicates un-
certainty and allows for disambiguation.

The overall effect of our approach is that feedback about
uncertainty is present throughout the interaction. For exam-
ple, as the user drags her finger in Figure 2, the system con-
tinually renders feedback about possible actions (line draw-
ing, resizing, and dragging). Only when the finger is raised
must the system select among these actions. In many cases,
thanks to the continual feedback, the user may directly ma-
nipulate the degree of uncertainty during the input action.
Should the correct action be unclear, the user can also dis-
ambiguate using a standard approach such as an N-Best list.

We demonstrate the flexibility of our architecture with a
collection of 11 new and existing interaction techniques
along with two complete applications implemented with our
architecture. Ranging from predictive menu systems to in-
teractive diagram beautification, these demonstrations not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea
Copyright 2015 ACM 978-1-4503-3145-6/15/04…$15.00
http://dx.doi.org/10.1145/2702123.2702228

...

And identify differences from
the last certain interface state.

Interfaces are reduced
to a smaller set...

Then fused into
a single tree... And rendered.

p=0.4

p=0.1

p=0.05

p=0.6

p=0.3

We start with a distribution
over possible interfaces...

...

p=0.1

p=0.05

'

'

'

'

'

'
'

p=0.4

http://lorenipsum.dol

September 24, 2014

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Morbi hendrerit diam a erat
ultrices, nec dapibus mi eleifend. Phasellus
blandit, erat vitae vulputate blandit, sem est
dignissim felis, eu eleifend erat turpis vel
nulla. Aenean tellus lorem, finibus sit amet
velit nec, fringilla eleifend odio. Proin lacinia
tristique est et tempor.

?

A B

Figure 1. Architectural overview. The input is a set of interface samples, which are reduced to a smaller set of interfaces, then

fused into a single interface, and rendered.

only show the generality of our architecture, but also the
power of probabilistic approaches in user interfaces.

BACKGROUND
This work builds upon the contributions of prior research in
three areas. First, the work builds on user interface frame-
works for handling inputs with uncertainty. Additionally,
many of the feedback techniques we describe are either
inspired by or directly implement existing techniques for
visualizing uncertain system state. A final area of related
work explores interfaces that allow users to see the results
of their actions in multiple parallel scenarios.

Frameworks for Handling Inputs With Uncertainty
A large body of work focuses on how to leverage probabil-
istic models to reduce ambiguity within specific input do-
mains such as text entry [8, 21] touch targeting [3], speech
[17], and gesture [11].

Moving beyond specific input technologies, there are at
least three general approaches to building user interface
systems for handling uncertain inputs. First, multimodal
input systems provide disambiguation when multiple differ-
ent input types (e.g., speech and gesture) are combined [9].
For example, the TYCOON system [16] provided a fusion
method that computed input likelihoods based on temporal
proximity of fused events. Additionally, XWand [25] uses a
Bayesian network to fuse multiple input sources, as well as
a user’s previous actions, to approximate a user’s intent.

A second approach aims to manage uncertain input similar-
ly to mainstream approaches for input handling. Schwarz et
al [18] builds off of work by Hudson et al [6], and Mankoff
et al [14,15] to provide an architecture for tracking the like-
lihood of interactive states given probabilistic inputs. These
likelihoods are then used to decide on application action
and provide feedback to the user. In the system provided by
Schwarz, rendering of meaningful feedback is left to the
developer: interactors need to consider the likelihood distri-

bution over their state, as well as other interactors, to render
themselves. As a result, only simple feedback techniques
are demonstrated. Our work builds directly off of [18] by
providing a general mechanism for identifying differences
between alternate possible interfaces as well as a mecha-
nism for fusing these alternatives so that interactor writers
do not need to consider probabilistic state when rendering
interactors.

A final approach presented by Williamson models the entire
user interface as an uncertain process [23]. The input-
action-feedback loop is used as a means to control a point p
in an ‘intention space’, and the dynamics of the input sys-
tem form a series of control loops that modify how sensed
input affects p. Knowledge about the likelihood of actions
enables modification of the dynamics of the input system,
as demonstrated in [24]. Like our work, Williamson’s sys-
tem provides a way to synthesize feedback. However, the
system design is quite different from the structure of con-
ventional user interfaces. Our architecture aims to provide a
developer-facing API that is as similar as possible to con-
ventional interfaces, reducing the amount of developer ef-
fort needed for adoption.

Existing Techniques for Communicating Uncertainty
Communicating uncertainty in user interfaces is a tricky
problem. When user input is ambiguous, users must under-
stand not only that their input is ambiguous, but also how to
provide disambiguation. To be most effective, the disam-
biguation interface must be a continuous interaction stream:
a rapid-fire conversation between human and computer.

Examples of such fluid feedback mechanisms exist. In
“Predictive Uncertain Displays” [23], Williamson uses in-
ference to continuously update a visual display of a user’s
interpreted input. A similar approach is provided in Oc-
topocus [1] where the interface continually updates the like-
lihood of possible gestures and renders possible comple-
tions to the user. In text entry and speech recognition sys-
tems, a list of alternate interpretations is often presented to
the user; an early example is the ViaVoice system [2]. In
many cases, how an input is being interpreted can be am-
biguous. Wigdor [22] and Li [10] developed feedback
mechanisms that show users how their touch inputs are be-
ing interpreted.

When the data primitives themselves (e.g., the location of a
mouse cursor, the width of an icon) are uncertain, prior
work on visualization of uncertain information from the
data visualization community may be used to communicate
uncertainty (see for example [13]). This early work shows
how drawing primitives such as contour crispness, fill clari-
ty, and blur can be used to communicate uncertainty.

Single Document Model and Subjunctive interfaces.
Modern user interfaces often maintain a single interface
state accomplishing a single possible task. Therefore, to
consider, e.g., alternate floor plans or different design

Figure 2. Example scenario. Initially the interface is certain.
User presses and drags on a draggable/resizable box. Touch
event samples are dispatched to possible interfaces. Three

varieties of interfaces are possible: (left) the user is not drag-
ging the box, but rather drawing a line, (center) the box is

being resized, (right) the box is being dragged (a garbage can
shows up, the user may drag to the trash to delete the box).

choices, users must undo and redo their actions. This is
called the single state document model [19], and makes
working with alternate scenarios laborious.

An alternative approach is to provide mechanisms for ex-
ploring multiple scenarios. In 2008, Lunzer coined the term
Subjunctive Interfaces to describe interfaces that support
the exploration of multiple scenarios [12]. For example,
Side Views [20] is an interesting example of an early feed-
back technique that gave previews of the results of different
choices a user may make (e.g., making text bold vs. italic).
Feedback about possible actions gets displayed in an inter-
face as possible outcomes. In a similar vein Parallel Paths
[19] presents a model of interaction that facilitates the gen-
eration, manipulation, and comparison of alternate solu-
tions. These lenses into other ‘possible worlds’ are reminis-
cent of Magic Lenses [4], though that work predates Lun-
zer. Additionally, Igarashi’s work on interactive beautifica-
tion [7] shows possible drawings (e.g., different snap tar-
gets, alternate interpretations) in a ghosted or dotted form,
which can then be selected.

The body of work in subjunctive interfaces is especially
interesting because it provides a rich set of interaction
techniques for interacting with alternatives beyond even
what is explored in this paper. This paper focuses on fusing
and presenting multiple alternatives, one of which is even-
tually selected to disambiguate input. In contrast, both Par-
allel Paths and the RecipeSheet [12] provide facilities for
manipulating alternatives interpretations directly. The ideas
presented in subjunctive interfaces contain a wide range of
possibilities for future work.

While the end results achieved by the methods described
above look similar to many of the demos presented in this
paper, the contribution of our work is different. These inter-
faces and interaction techniques are contributing just that:
interface designs and interaction techniques. The contribu-
tion of this work is in an architecture that can enable simple
construction of all of the interaction techniques presented,
and more. Our architecture enables developers to easily
experiment with different feedback techniques by allowing
developers to easily switch between feedback methods, as
well as develop new techniques. The task of analyzing in-
terface differences, selecting alternatives, and fusing alter-
natives is abstracted away, allowing developers to focus on
the interaction logic and presentation layer of the interface.

ARCHITECTURE DESCRIPTION
In conventional interfaces, the state of a single interface is
the basis of everything that is displayed to the user. More
specifically, if we know the structure of the interactor tree
and the values of its associated variables, we know the state
of an interface and have all of the information needed to
render it on the screen. A necessary precondition for our
feedback system is to replace that single interface with a
distribution (a probability mass function or PMF) over pos-
sible interfaces. There are several ways to obtain a distribu-

tion over possible interfaces, and we structured our archi-
tecture similarly to the method described by Schwarz et al
in [18].

In what follows, we describe both derivative work (which
we compare to [18] in the text), and our feedback system,
which is novel and the main contribution of this paper. We
first describe the architecture we derived from [18] briefly.
During event dispatch, this architecture tracks the probabil-
istic state of the interface and produces a probabilistic dis-
tribution of action requests representing the user’s intent.

In a traditional non-probabilistic input system, the event
dispatch process would have produced modifications to the
interface as well as possibly the application. Typically, this
would cause an interface to be drawn or redrawn based on
the state and structure of the interactor hierarchy represent-
ing the interface. Essentially what a traditional system does
is to take a tree representing the interface and render it on
screen as an image. However, in our case there are multiple
possibilities that need to be displayed, corresponding to
possible intents of the user. We will describe our process
for selecting representative examples from these multiple
possibilities, combining them into a single tree, and render-
ing them on screen as feedback about uncertainty. A major
contribution of this work is a flexible and interactive ap-
proach to doing this.

The toolkit described here and in the next sections was im-
plemented in JavaScript and tested on the Google Chrome
browser v37.0.2062.94. The toolkit uses a custom input
dispatch pipeline, implemented by hooking into the normal
input events available in the browser. The rendering system
used in the toolkit uses SVGs, meaning that an interface
draws itself onto an SVG element on an HTML page,
which is then rendered by the browser. The system was
developed and tested on a quad-core machine (2.3GHz
each, Intel Core i7) with 16 GB of RAM. This consumer-
grade machine was able to run all the demos described in
this paper with reasonable responsiveness, with a maximum
input dispatch time of 300 ms.

An Architecture for Tracking the User’s Intent
To understand how these parts work together in the archi-
tecture consider the following setup (Figure 2): a user
presses and drags with her finger on the edge of a draggable
and resizable box (Figure 2, top middle). The interface also
contains a ‘line brush’ which allows a user to draw straight
lines. Initially the interface contains no ambiguity (Figure 2,
top left), with the box in its neutral start state.

The implementation used in this paper takes a Monte Carlo
approach, modeling user input as a collection of event sam-
ples each representing different inputs the user may have
intended [18]. Note that we make use of weighted samples,
where a sample’s weight is an indication of its likelihood
(an approximation of the probability that it is correct). For
example, when the user presses her finger down, a collec-

tion of event samples representing an approximation of the
distribution over possible locations is generated.

Each event sample is dispatched to the (probabilistic) inter-
face to accumulate a new set of interface samples (probabil-
istic state for the overall interface) as well as a probability
distribution over the actions that this would imply. To be
more specific, we have one or more sample interfaces to
which each sample event is dispatched (delivered to the
appropriate interactor or interactors within the interface).
We assume that the initial state of the interface is known.

For each pair of interface sample and event sample, we cre-
ate a new interface sample that will process the event sam-
ple, and make requests for changes to the interface or appli-
cation. Note that clones preserve key properties of interfac-
es such as a unique ID for interactors and interactor proper-
ty values. Figure 2, bottom shows three possible samples
that may be generated.

Tracking sample interface alternatives greatly simplifies
dispatch, since when a sample event is dispatched to a sam-
ple interface, that sample interface is able to operate in an
apparently deterministic world (the one indicated by the
sample(s) involved). Note that this is different from [18],
which tracks samples over interactor state (separately for
each interactor) within a single interface.

When the dispatch of an input event sample to an interface
sample causes an action (such as a visual change in the lo-
cation or size of the rectangle in Figure 2, or a change to the
application state such as the deletion of the box), an action
request is created which encapsulates the action [18]. Ac-
tion requests may be local (to the interface itself) or may
encapsulate potentially irreversible final actions (e.g.,
changing the state of an application outside the interface
itself) [18]. As with other Monte Carlo representations of
distributions, each action request becomes a sample within
that distribution and has an associated likelihood. Thus, the
collection of all actions requests is a representation of the
probability distribution over possible actions implied by the
possible input events to the possible states of the interface.

In the example in Figure 2, as the user drags her finger, a
set of interface samples is tracked that produce action re-
quests for all of the possible actions the user intends. These
potentially include multiple action requests representing
different start and end points for drawing a line, resizing the
box, and moving (dragging) the box across the screen.

Going from Interface Samples to Feedback
At this point, in a non-probabilistic input system, any side
effects of events have been executed and the tree represent-
ing the interface would be rendered on screen.

Instead, our feedback system goes through a four-stage pro-
cess (Figure 1). First, it is necessary to select what actions
to execute (and execute them). This step, for example, may
eliminate highly unlikely options. Second, it is important to
reduce the probability distribution to a manageable number

of exemplars for display to the user. Presenting feedback
about all possible interfaces to the user could in many cases
be confusing. Third, we fuse the exemplars into a single tree
according to the feedback technique being used. Finally,
this tree must be rendered on screen to reflect any uncer-
tainty to the user. Rendering is done in a conventional way
and does not require any special infrastructure.

Before describing this process in detail, it is important to
understand how it fits into the overall event dispatch and
redraw cycle of the system. Each time a new set of sample
events produces a PMF over alternative interfaces, a new
fused interface is displayed on screen. In other words, the
fused interface exists only for the instant in time between
one user action and the next. For example, while the finger
is dragging across the screen in our running example, the
user essentially is using a direct manipulation interface in
which they can see and influence the impact of their actions
as they act.

Note that when an input event arrives, a feedback wrapper
(present only in the fused interface) may elect to handle the
input event and react to it rather than sending it to the prob-
abilistic input system. For example, if a user selects an item
in an N-Best list by pressing with her finger, the interactor
generated by the N-Best fusion technique (an N-Best Item
Container) will set that alternative interface as certain.

A major contribution of our work is our flexible approach
to selection, reduction and fusion. Figure 1 shows the pro-
cess for reduction and fusion. Each stage of the process is
pluggable in our system.

Selecting Among Alternative Actions
Once dispatch is complete for a given input event, a collec-
tion of action requests has been generated which can be
programmatically examined. The selection phase can deal
with situations when an action is obviously wrong or right
(i.e. has a very high or low likelihood). We provide support
for automatic mediation (following the methods described
in [18] and [14]).

Recall that actions are produced by interface samples, and
represent a certain world view (with respect to that sample).
Thus, to reject an action, we discard the action request and
its associated interface state. This is the approach used
when removing things that have very low likelihood.

Handling of accepted actions depends on the nature of the
action: When an action request is local, executing it will
make necessary updates to its associated interface without
affecting the application. Since this type of request does not
modify the application, its effects can be undone simply by
discarding the interface sample it acted upon. As a result,
we allow multiple local actions to be accepted, meaning
they are executed on their associated interface alternative.
All changed interactors in the interactor tree are marked as
changed during this process (including changes to the prop-
erties of any interactor or number of children). Figure 3

shows the interactors that would be marked as changed for
three alternative interfaces associated with the running ex-
ample in Figure 2.

When an action request is final, that implies that the action
will have an impact on the application state (e.g., saving a
file, killing a process, etc.). If a final action is selected for
execution, since the action is irreversible, the distribution
across possible interface states must be reduced to a single
interface resulting from executing that action alone. The
decision about whether to accept any final actions is han-
dled by a pluggable automatic mediator [14], which checks
to see whether multiple final actions with similar high like-
lihood are all present or not.

When a final action is accepted, its associated interface
alternative can be displayed without further modification
and the system can wait for the next set of event samples.
More typically there will be a large number of local actions
whose associated interface alternatives need to be dis-
played, in which case we go on to the reduction step. A
third possibility is that multiple final and local actions re-
main along with their interface alternatives, in which case
we may show feedback about the alternatives but defer exe-
cution of the final actions until further user input arrives.

Reducing the Set of Alternative Interfaces
The result of executing multiple local actions in the Selec-
tion step is multiple interface samples. These represent a
probability mass function (PMF) approximating the proba-
bility distribution over possible actions the user intends. In
many cases, the number of interface alternatives exceeds
what could reasonably be communicated to the user. There-
fore, our feedback system must reduce the number of inter-
face alternatives into a representative subset. The result is a
new collection of alternate interfaces. In our example from
Figure 2, the system feedback mechanisms choose to re-
duce all of the alternative interfaces to three different inter-
faces (Figure 2, bottom). These interface alternatives repre-
sent the major classes of actions possible in the system:
drawing a line (Figure 2, bottom left); resizing the box via
the handle on its edge (Figure 2, bottom middle); and drag-
ging the box (possibly to a trash can that appears in re-
sponse to the drag; Figure 2, bottom right).

The reduction step takes a list of interface alternatives
(weighted with likelihoods) as input and returns a new list

of alternatives (weighted with merged likelihoods) repre-
senting a reduced set. We have implemented and experi-
mented with two reduction algorithms, however reduction
is implemented in a pluggable fashion, allowing for other
algorithms to easily be added.

Our first method is to pick the N most likely alternatives
and re-normalize the probabilities across those alternatives.
While simple, this has the disadvantage of not representing
a wide range of interfaces. For example, the top 10 alterna-
tives in Figure 2 might all be lines with slightly different
start and end points. Showing only the top alternatives in
this case would fail to convey the other possibilities.

Another method we implemented is to group together inter-
face alternatives for which the same interactor or set of in-
teractors are changed, and then select or create a representa-
tive alternative interface for each group. The likelihood of
the representative alternative for a group is the sum of the
likelihoods of the samples it represents. In this method, all
three alternatives at the bottom of Figure 2 would be pre-
sent in the reduced set of interface alternatives. For exam-
ple, a single representative line would be included which
has a position that represents a merged version of the full
set of lines, as described next.

Although within a group the same interactors are changed,
the specific details of those changes (represented as proper-
ty values associated with the interactors) may differ from
one sample interface to the next. If we select a single sam-
ple interface, it may not have appropriately representative
property values. Thus, we update each property value of
each changed interactor using a pluggable merge function,
which takes a set of (alternative_value, likelihood) pairs
and reduces them into a representative value. For example,
for a property whose value is numerical, one merge tech-
nique would be to take the weighted mean. We provide
several basic merge functions for primitive variable types.
Developers may provide new merge functions, as well as
specify which merge function is used when.

Fusion of Representative Interface Samples for Feedback
Once a small number of representative interfaces have been
created, the feedback system fuses these interface alterna-
tives into a single interface. More specifically, feedback
mechanisms take in a PMF over interface alternatives (gen-
erated by reduction), fuse them in some way, and return a
single interface that can be rendered to the user. This fused
interface will include interactors copied from the repre-
sentative interfaces, as well as specialized container and
wrapper interactors that implement specific feedback
presentation techniques. Figure 5 shows several sample
fused interfaces.

Our general approach to fusion involves defining what in-
teractors should be displayed, and how they should be dis-
played. The system walks down the interface hierarchy of
the last certain interface. In tandem, it walks down the rep-
resentative interfaces producing a fused tree according to

Figure 3. For each alternative in Figure 2, the system

tracks which interactors in the hierarchy are different
from the original (shaded in).

rules that differ depending on the specific type of fusion
strategy used. For example, when an interactor is selected
for display in the fused tree, it can be placed inside a con-
tainer that implements the feedback mechanism in use.
There are two primary types of containers that handle feed-
back. Grouping containers decide how to display a group of
alternative interactors, while Wrapper containers modify
the look and feel of a specific alternative that is being dis-
played to visually convey information (such as likelihood).

As an example of how this works, consider the interface
hierarchy that would result from the alternatives shown in
our running example (Figure 2). Figure 4 shows the new
interface hierarchy that would be generated as a result of a
very simple feedback system that overlays all three sample
interfaces, each placed inside a type of feedback (FBG)
container that simply displays them appropriately to indi-
cate likelihood. The FBW containers in Figure 4 may
change the opacity of their contents, for example.

Interface developers may use existing fusion strategies or
write their own. In this paper we will describe two general
types of fusion strategies available in our library (along
with several extensions of each strategy) that can be used to
create a wide range of specific feedback techniques. Many
more fusion strategies are possible and may be built by ex-
tending the default fusion object and implementing a func-
tion that takes as input a list of (interface alternative, likeli-
hood) pairs and returns a single interface.

An important note is that this architecture does not require
developers of interactors to consider the uncertain state of
the interactor (or the uncertain state of other interactors)
when drawing themselves. Interactors draw themselves as
with conventional interfaces. Communicating uncertainty is
instead handled by special interactors inserted into the new
interface hierarchy which modify how their children are
rendered (by, e.g., changing the opacity of all children
based on the likelihood of an alternative).

Our architecture provides a simple yet powerful method for
generating feedback about uncertain interfaces. In the next
section we describe a range of feedback techniques provid-
ed in our library.

SPECIFIC FEEDBACK TECHNIQUES
Our architecture enables a large number of feedback tech-
niques, ranging from simply overlaying alternative versions

of interactors to showing an N-best list of alternative inter-
faces that allows a user to disambiguate their intent.

These techniques can be grouped into three categories of
fusion strategies. First, we discuss a technique that groups
and alters the appearance of alternatives. Next, we discuss
interactive feedback techniques that not only show alterna-
tives but also allow users to disambiguate intent. Finally we
present contextual feedback selectors: a technique that
picks which feedback object to use based on context.

Grouping Alternate Interactors and Altering Appearance
The first feedback category we explored centers around
organizing similar interactors in the same grouping contain-
er and then applying wrappers to the alternatives that en-
code a wide range of visual feedback techniques. By de-
fault, these grouping containers are placed within a tree
consisting of all of the interactors from the alternatives
which are not changed. This ensures that the basic structure
of the interface is visible in addition to feedback about un-
certain alternatives. The Feedback Group container (FBG)
makes decisions about which alternatives to display when.
This can include context and timing dependent selection of
what to display.

The Feedback Wrapper container (FBW) decides how to
display alternatives. For example a wrapper might modify
the transparency used when rendering an interactor (but
otherwise leave its appearance unmodified), or it might
extract some summary rendition (such as text or an icon)
and display that instead of the normal presentation. Consid-
er our running example of a draggable and resizable box
(Figure 2). Figure 4 shows the new interface hierarchy that
would be generated as a result of grouping alternatives.
Figure 5 shows a few of the variations that are possible in
this approach, including overlaying all of the alternatives
using opacity or blur to indicate likelihood and adding a
decoration to indicate likelihood (progress bars).

Our system provides generic versions of each type of con-
tainer, which can be subclassed to provide a range of feed-
back. For example, our library includes containers imple-
menting a variety different grouping techniques ranging
from simply showing the most likely interface to overlaying
all possible interfaces into a single interface. Below we
describe some examples.

Our library includes Feedback Wrapper objects that adjust
the opacity, scale, blur, contrast, and saturation of interac-
tors based on their likelihood (Figure 5 shows a few exam-
ples using the running example in this paper). In addition to
image adjustments, we can also render additional infor-
mation using the wrapper. For example, we implemented a
‘progress bar’ style display that renders a bar indicating
likelihood at the top left of its child.

We used an opacity wrapper to implement a demonstration
of Octopocus [1]. In our implementation, each recognized
gesture alternative is delivered as an event alternative and

Fused
Root

FBG
Brush

FBW
Brush 0

Brush 0

FBW
Brush 1

Brush 1

FBG
Trash

FBW
Trash 0

Trash 0

FBW
Trash 2

Trash 2

FBG
Box

FBW
Box 0

Box 0

FBW
Box 2

Box 2

FBW
Box 1

Box 1

Figure 4. Interface hierarchy that would be generated as a re-
sult of grouping the alternatives in Figure 3. Numbers refer to
the alternative the interactor came from. Alternative 0 is the

most recent certain interface.

creates an interface alternative as a result. A ‘gesture in-
teractor’ in each alternate interface shows both the gesture’s
past trail and its predicted completion path (as computed
using the fitting algorithm described in [1]). Each of these
alternate interfaces (one for each alternatively recognized
gesture input) is fused using the grouping technique, where
the group simply overlays the interfaces and the wrapper
simply adjusts opacity to reflect probability. This demon-
stration was implemented using a total of 140 lines of Ja-
vaScript, not including gesture recognition code.

Animating among multiple versions of an interactor is an-
other way to indicate the range of uncertainty (this is briefly
discussed in [13], but no implementation is presented). Our
library includes Feedback Group containers that jitter or
pulsate according to the number of alternatives in a group.
Another animation technique fades between alternatives.

To summarize, by grouping alternatives and wrapping them
in a variety of pluggable containers, we can achieve a range
of feedback effects. From the user’s perspective, this cre-
ates a feedback loop in which they can change their input
(for example the shape of the gesture they are drawing) and
monitor the system’s response, ensuring that the correct
interpretation is primary.

N-Best Lists
The methods described above communicate uncertainty and
allow the user to respond, but do not directly support inter-
action. In contrast, a traditional n-best list allows the user to
directly select an alternative.

This class of “N-Best List” feedback can take many forms.
A simple and relevant example scenario is with gesture
(Figure 6, Top). After the user completes a gesture, the ges-
ture recognizer may have produced several likely alterna-
tives. In this case, the interface may show an N-Best list
illustrating the resulting interfaces that may occur as a re-
sult of her gesture (e.g., adding several shapes, or drawing
to the screen in red ink). Note that this example shows just
the immediate resulting shape. Many rendering choices are
possible, such as showing the entire resulting interface
(Figure 6, bottom left) or highlighting only the portions that
would change (Figure 6, bottom right).

Figure 7 shows the hierarchy generated as a result of fusing
interface alternatives in our running example using an N-
Best list. Note that the root interface into which the N-Best
list is fused is by default the most recent certain interface,
although this may be modified by the developer (e.g., to
show the alternative with the highest likelihood).

The N-Best Item Group is responsible for rendering the
remaining alternatives (i.e., the relevant portions of the N
most probable interface alternatives) and providing a means
for the user to select from among them. The display of each
individual item is determined by the wrapper object placed
over the subtree for the item. The N-Best Item Group han-
dles layout and scaling, so that for example a rendering of
an entire alternative interface may fit within a small box
within the N-Best list. The N-Best Item Group also pro-
vides a selection mechanism for picking from the items.

Our implementation provides generic versions of the N-
Best list container, which can be subclassed to achieve a
variety of effects. Our library of N-Best lists varies along
three dimensions: how uncertainty is communicated, how
alternatives are presented, and how alternatives are interact-
ed with. Below we give examples of demonstrations im-
plementing each of these design dimensions.

Figure 6. Examples of different N-Best lists implemented using
our system. Top: After executing a gesture, show possible alter-

natives. Bottom Left: Show entire interface. Bottom Right:
Show entire interface and highlight changes.

Figure 5. Three example renderings of the running example (Figures 2-5). Grey dots represent touch area, small dots represent

touch samples. Alternative interfaces are rendered using: Left – opacity (the line is very unlikely, not visible); Center – blur;
Right –progress bars (with all three interfaces overlaid). The draggable item and trash are most likely here.

Adjusting Appearance to Communicate Uncertainty: As
with the first category of feedback we described, our library
includes subclasses of the N-Best Item Group and associat-
ed wrapper containers which cover a range of examples of
how this approach may be used. By adding a Feedback
Wrapper above each item, in an N-Best list can indicate
likelihood using any of the methods described earlier (opac-
ity, blur, contrast, progress bar, etc.).

What Information to Show: As mentioned above, the tree
processing phase determines what elements are placed un-
der a given N-Best Item Group. The group then determines
how each interface alternative is rendered. For example, our
library of generation classes for N-Best lists include placing
in the group: 1) the entire interface of each alternative
(Figure 6, bottom left), 2) only the portion of the interface
that has changed (Figure 6, top), 3) the entire interface, but
using wrappers to highlight changes (Figure 6, bottom
right), or 4) a compressed view of only the leaf interactor
that has changed (Figure 9, center). Note that in the case of
(4) we currently require the interactor to provide a function
for drawing itself in compressed form, though in future
work, aspects of this could be automated.

How to Disambiguate: As mentioned above, a fused feed-
back interface can handle input events to allow users to
disambiguate intent. We have implemented techniques for
selecting interface alternatives by: 1) selecting the alterna-
tive directly, 2) when dragging, crossing over an interface
alternative to select it, and 3) using keyboard keys to select
an alternative. When an alternative is selected, all compet-
ing alternatives are rejected.

Contextual Feedback Selectors
The feedback a developer may want to show may vary
based on things like the degree of ambiguity between inter-
faces, the number of alternatives, which interactors are am-
biguous, the source of user input, and user behavior. For
example, a developer may wish to show the single most
likely interface when the system is confident, but show a
list of alternate interpretations when several alternatives are
likely. Similarly, a developer may wish to only show the
top choice (a trivial form of feedback) unless the user hesi-
tates. Finally, feedback may be selected based on the type
or ID of an interactor.

To facilitate this, we developed several feedback generator
objects of a class we call Contextual Feedback Selectors
which make decisions about all or part of how they generat-
ed feedback based on contextual information. When asked
to generate feedback, these objects first check contextual
information, then select which of one or more actual feed-
back types to display. In other words, these feedback gener-
ator objects select among other feedback generator objects
based on context. Of course, developers may extend and
develop their own feedback generator objects, as with the
rest of the components of the system.

As part of the feedback library of our system, we imple-
mented a feedback selector object for each contextual piece
of information mentioned above. One particularly useful
selector is an object that only shows feedback when a user
hesitates. This is sensed by looking for a pause in either
finger or mouse motion (e.g., by comparing the current
mouse position to a temporally smoothed position). By de-
fault, this feedback mechanism shows only the most likely
interface. When a pause is detected, the feedback selector
sends a synthetic input event to force interface update. The
feedback selector then shows other possible interpretations.

One example demonstration of this technique is probabilis-
tic text selection (Figure 8). Text is cumbersome to select
on a mobile phone because of ambiguity between whether a
press and drag indicates text selection or scrolling. We built
a simple model measuring the likelihood of an intended
scroll or text selection using simple gestural features
(amount of vertical motion), and used this model to adjust
the likelihood of action requests from the scroll view and
underlying text view. As a result, the interface tracks both
alternatives along with their likelihoods. This demonstra-
tion was implemented in 350 lines of code (including logic
for tracking & rendering highlighted text, and scrolling).

The feedback we developed is shown in Figure 8 at the top
left. In this case, we have combined an N-Best list with a
Context Feedback Selector object that only shows feedback
when the user pauses (possibly indicating an incorrect

Fused
Root

trash
canboxline

brush
N Best
Group

N Best Item
Container 2

trash
can

line
brush box

N Best Item
Container 1

trash
canboxline

brush

container container

N Best Item
Container 3

line
brush box trash

can

container

Figure 7. Interface hierarchy that would be generated as a
result of making an N-Best list of alternatives in Fig 4.

Figure 8. This touch interface disambiguates between
when a user is scrolling or selecting text. Both alterna-

tives and their likelihoods are tracked (right). Likelihood
is determined by finger motion. Initially, the most likely
interface (text selection) is shown. After the user pauses,

an option to scroll instead appears in the upper left.

guess). The N-Best list is showing only one alternative (the
other choice) and renders a small cue in the upper left, al-
lowing the user to switch to the alternate mode (scrolling).

CASE STUDY APPLICATIONS
In addition to the feedback techniques demonstrated above,
we performed two case studies to demonstrate the value and
test the feasibility of our approach. The first study is an
exploration of feedback techniques in a predictive menu
system, while the second is an implementation of a dia-
gramming application inspired by the ideas of Igarashi’s
Interactive Beautification [7].

Predictive Menus
Our predictive menu is an example of an adaptive user in-
terface. It uses a simple conditional probability table to
guess which menu item a user intends to select, and allow
him/her to more rapidly select the predicted item. Findlater
and Gajos cover the design space of such adaptive interfac-
es and discuss evaluation issues in [5]. We used our feed-
back system to explore one design covered in [5] as well as
two new designs. First, we overlay possible future menu
selections on the menu (Figure 9, Right), adjusting the
opacity so that likely items are highlighted. We also use an
N-Best list showing possible menu items ordered by likeli-
hood (Figure 9, Left). A third design shows a compressed
N-Best list (Figure 9, Center).

Although the capabilities of predictive menus are fairly
complex, our implementation is no more complex than that
of a normal hierarchical menu. In fact, more complexity is
devoted to the implementation of the hierarchical menu
itself than to rendering predictions. In our demonstration,
about 200 lines of code are used for interface setup and
configuration, while 360 lines of code were needed for the
hierarchical menu implementation (rendering, tracking
which menus should be open, etc.). The drawing code for a
menu item simply draws itself; it does not consider its like-
lihood, nor the likelihood of other alternatives.

When a menu item is selected, the menu interactor deter-
mines a list of predicted future events (and likelihoods) and
dispatches a new probabilistic event, which in turn gener-
ates a list of interface alternatives representing possible
future menu selections. These alternatives are then dis-
played using one of the feedback methods we developed.

This example demonstrates how complex interactions such
as predicting future actions and showing possible comple-
tions can be accomplished using methods that are no more
complex than those in existing interfaces. Our architecture
handles the complexity of both tracking alternatives and
(more relevant to the contribution of this work) fusing al-
ternatives to render feedback.

Interactive Beautification of Touch Interfaces
Inspired by Igarashi [7] and Lunzer [12] we built a touch
interface for drawing diagrams (Figure 10). Users may
draw rectangles or ellipses using free form gestures (e.g.,
draw a circle to make a circle) or by dragging a bounding
box. They may also draw straight lines. Shapes and lines
may be dragged and resized. When an item is dragged, a
'remove' drag target appears on the bottom of the screen,
but only for the interface alternatives containing a shape
being dragged. A line’s endpoints snap to control points on
shapes. If multiple snap points are possible, all alternatives
are tracked. Items can be removed by being dragged to the
bottom of the screen. When being dragged, appropriate
feedback shows up indicating the remove region as a possi-
ble destination. Of course, the user may simply wish to
place an item near the bottom of the screen. When multiple
actions are possible the application shows the most likely
action by default. When the user hesitates, the application
shows an N-Best list. The user can then select one of the
alternatives to disambiguate. This type of interaction would
be very difficult to implement in a conventional user inter-
face framework. In fact, one would need to build something
almost as complex as our general feedback architecture to
properly handle all cases (such as, the remove button ap-
pearing only when draggable items are selected). In con-
trast, this application was written largely without regard to
probability, and its fairly complex operation was described
about 800 lines of JavaScript.

CONCLUSION AND FUTURE WORK
This paper presents an architecture for fusing a probability
distribution over possible interfaces into a single interface
that communicates uncertainty and allows for disambigua-
tion. We demonstrate the flexibility of our architecture with
a collection of new and existing interaction techniques and
two case study applications. Our work abstracts away the
task of analyzing interface differences, selecting alterna-

Figure 9. Demonstration of several forms of interactive feedback in a predictive menu system built with our architecture. The
user has moved his mouse over the Edit item; a predictive model computes likelihoods of subsequent menu items. Left: An n-

best list of the four most likely menu items is displayed. Users may select an alternative to jump to the interface alternative
presented. Middle: A more compressed n-best list. Right: Every interface alternative is overlaid, opacity reflects likelihood.

tives, and fusing alternatives, allowing interface developers
to focus on interaction logic and presentation.

The examples in the previous sections demonstrate some of
the feedback techniques that our architecture supports. In
the future we hope to expand our library of feedback tech-
niques, incorporating more work from the data visualization
literature on portraying uncertainty, and allowing for inter-
face alternatives to be modified. Additional future work
includes developing more sophisticated algorithms for in-
terface reduction (e.g., using clustering techniques to identi-
fy similar interfaces) and identifying differences between
alternatives. By providing an architecture that enables de-
velopment of sophisticated feedback techniques for uncer-
tain user interfaces, this work is helping to lay the founda-
tion for a new era of nondeterministic user interfaces that
leverage probabilistic models to better infer user intent.

ACKNOWLEDGMENTS
This work was funded by NSF Grant IIS1217929, and fel-
lowships from Microsoft Research, Google and Qualcomm.

REFERENCES
1. Bau, O., Mackay, W., OctoPocus: A dynamic guide for

learning gesture-based command sets. Proc. UIST 2008,
37-46.

2. Baumgarten, Barksdale, and Rutter. IBM® ViaVoice™
QuickTutorial®, 2000.

3. Bi, X., & Zhai, S. Bayesian Touch: A statistical criterion
of target selection with finger touch. Proc. UIST 2013,
51-60.

4. Bier, E., Stone, M., Pier, K., Buxton, W., DeRose, T.
Toolglass and magic lenses. Proc. SIGGRAPH 1993, 73
– 80.

5. Findlater, L. and Gajos, K. Design space and evaluation
challenges of adaptive graphical user interafaces. AI
Magazine. 30(4): 68, 2009.

6. Hudson, S.E., Newell, G. L. Probabilistic State Ma-
chines: Dialog management for inputs with uncertainty.
Proc. UIST 1992, 199 – 208.

7. Igarashi, T., Sachiko, K., Hidehiko, T., Matsuoka, S.
Pegasus: A drawing system for rapid geometric design.
Proc. CHI 1998, 24 – 35.

8. Kristenson, P., Zhai, S. SHARK2: a large vocabulary
shorthand writing system for pen-based computers.
Proc. UIST 2014, 43 – 52.

9. Lalanne, D., Palanque, P., Robinson, P., Vanderdonckt,
J., Ladry, J. Fusion engines for multimodal Input: a sur-
vey. Proc. ICMI 2009, 153 - 160.

10. Li, Y. Beyond pinch and flick: enriching mobile gesture
interaction. Computer. 42(12):87-89, 2009.

11. Li, Y., Lu, H., Zhang, H. Optimistic programming of
touch interaction. TOCHI. 21(4): 24, 2014.

12. Lunzer, A., Hornbæk, K. Subjunctive interfaces.
TOCHI. 14(4): 1-44, 2008.

13. MacEachren, A.M. Visualizing uncertain information.
Cartographic Perspective. 13(13):10–19, 1992.

14. Mankoff, J., Hudson, S. E., Abowd, G. D. Interaction
techniques for ambiguity resolution in recognition-based
interfaces. Proc. UIST 2000, 11 – 20.

15. Mankoff, J., Hudson, S. E., Abowd, G.D. Providing
integrated toolkit-level support for ambiguity in recogni-
tion-based interfaces. Proc. CHI 2000, 368-375.

16. Martin, J. Veldman, R., Béroule, D. Developing multi-
modal interfaces: a theoretical framework and guided
propagation networks. Proc. Multimodal Human-
Computer Comunication, Systems, Techniques and Ex-
periments 1998, 158-187.

17. Oviatt, S. Mutual disambiguation of recognition errors
in a multimodal architecture. Proc. CHI 1999, 576-583.

18. Schwarz, J., Mankoff, J., Hudson, S.E., Monte Carlo
methods for managing interactive state, action and feed-
back under uncertainty. Proc. UIST 2011, 235 – 244.

19. Terry, M., Mynatt, E., Nakakoji, K., Yamamoto, Y. Var-
iation in element and action: supporting simultaneous
development of alternative solutions. Proc. CHI 2004,
711-718,

20. Terry, M., Mynatt, E. Side Views: persistent, on-
demand previews for open-ended tasks. Proc. UIST
2002, 71 – 80.

21. Weir, D., Rogers, S., Murray-Smith, R., Löchtefeld, M.
A user-specific machine learning approach for improv-
ing touch accuracy on mobile devices. Proc. UIST 2012,
465-476.

22. Wigdor, D., Williams, S., Cronin, M., Levy, R., White,
K., Mazeev, M., Benko, H. Ripples: Utilizing per-
contact visualizations to improve user interaction with
touch displays. Proc. UIST 2009, 3 – 12.

23. Williamson, J., Continuous uncertain interaction. PhD
thesis. PhD thesis, University of Glasgow.

24. Williamson, J. Hex: Dynamics and probabilistic text
entry. Proc. Switching and Learning in Feedback Sys-
tems 2003. 333-342.

25. Wilson, A., Shafer, S. XWand: UI for intelligent spaces.
Proc. CHI 2003, 545-552.

Figure 10. N-Best list in drawing application. Left: User
drags on an empty area; she may create a line, rectangle,
or ellipse. Right: When adjusting endpoints, several snap

points are possible (hollow circles).

