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ABSTRACT 
Increasingly natural, sensed, and touch-based input is being 
integrated into devices. Along the way, both custom and 
more general solutions have been developed for dealing 
with the uncertainty that is associated with these forms of 
input. However, it is difficult to provide dynamic, flexible, 
and continuous feedback about uncertainty using traditional 
interactive infrastructure. Our contribution is a general ar-
chitecture with the goal of providing support for continual 
feedback about uncertainty.  

Our architecture is based on prior work in modeling uncer-
tainty using Monte Carlo sampling, and tracks multiple 
interfaces – one for each plausible and differentiable se-
quence of input that the user may have intended. Important-
ly, it considers how the presentation of uncertainty can be 
organized and implemented in a general way. Our primary 
contribution is a method for reducing the number of alter-
native interfaces and fusing possible interfaces into a single 
interface that both communicates uncertainty and allows for 
disambiguation. We demonstrate the value of this result 
through a collection of 11 new and existing feedback tech-
niques along with two applications demonstrating the use of 
the feedback architecture. 

INTRODUCTION 
Recognition-based input technologies such as speech, touch 
gesture, and in-air motion are becoming increasingly preva-
lent. Unfortunately, these technologies are inherently uncer-
tain, which violates a core assumption of most modern in-
terface systems: that input is unambiguous. Prior work has 
both demonstrated the benefit of treating inputs probabilis-
tically [3, 8, 11, 21], and proposed systems for integrating 
uncertainty while maintaining an architecture similar to 
conventional dispatch systems [18]. However, a system is 
needed for communicating this uncertainty back to the user.  

This paper contributes a general architecture for tracking 
interface alternatives arising from varying interpretations of 
input, reducing the number of alternative interfaces to a few 
representative examples and fusing those possible interfaces 
into a single interface that dynamically communicates un-
certainty and allows for disambiguation.  

The overall effect of our approach is that feedback about 
uncertainty is present throughout the interaction. For exam-
ple, as the user drags her finger in Figure 2, the system con-
tinually renders feedback about possible actions (line draw-
ing, resizing, and dragging). Only when the finger is raised 
must the system select among these actions. In many cases, 
thanks to the continual feedback, the user may directly ma-
nipulate the degree of uncertainty during the input action. 
Should the correct action be unclear, the user can also dis-
ambiguate using a standard approach such as an N-Best list.  

We demonstrate the flexibility of our architecture with a 
collection of 11 new and existing interaction techniques 
along with two complete applications implemented with our 
architecture. Ranging from predictive menu systems to in-
teractive diagram beautification, these demonstrations not 
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Figure 1. Architectural overview. The input is a set of interface samples, which are reduced to a smaller set of interfaces, then 

fused into a single interface, and rendered. 

  



 

only show the generality of our architecture, but also the 
power of probabilistic approaches in user interfaces. 

BACKGROUND 
This work builds upon the contributions of prior research in 
three areas. First, the work builds on user interface frame-
works for handling inputs with uncertainty. Additionally, 
many of the feedback techniques we describe are either 
inspired by or directly implement existing techniques for 
visualizing uncertain system state. A final area of related 
work explores interfaces that allow users to see the results 
of their actions in multiple parallel scenarios. 

Frameworks for Handling Inputs With Uncertainty 
A large body of work focuses on how to leverage probabil-
istic models to reduce ambiguity within specific input do-
mains such as text entry [8, 21] touch targeting [3], speech 
[17], and gesture [11]. 

Moving beyond specific input technologies, there are at 
least three general approaches to building user interface 
systems for handling uncertain inputs. First, multimodal 
input systems provide disambiguation when multiple differ-
ent input types (e.g., speech and gesture) are combined [9]. 
For example, the TYCOON system [16] provided a fusion 
method that computed input likelihoods based on temporal 
proximity of fused events. Additionally, XWand [25] uses a 
Bayesian network to fuse multiple input sources, as well as 
a user’s previous actions, to approximate a user’s intent. 

A second approach aims to manage uncertain input similar-
ly to mainstream approaches for input handling. Schwarz et 
al [18] builds off of work by Hudson et al [6], and Mankoff 
et al [14,15] to provide an architecture for tracking the like-
lihood of interactive states given probabilistic inputs. These 
likelihoods are then used to decide on application action 
and provide feedback to the user. In the system provided by 
Schwarz, rendering of meaningful feedback is left to the 
developer: interactors need to consider the likelihood distri-

bution over their state, as well as other interactors, to render 
themselves. As a result, only simple feedback techniques 
are demonstrated. Our work builds directly off of [18] by 
providing a general mechanism for identifying differences 
between alternate possible interfaces as well as a mecha-
nism for fusing these alternatives so that interactor writers 
do not need to consider probabilistic state when rendering 
interactors.  

A final approach presented by Williamson models the entire 
user interface as an uncertain process [23]. The input-
action-feedback loop is used as a means to control a point p 
in an ‘intention space’, and the dynamics of the input sys-
tem form a series of control loops that modify how sensed 
input affects p. Knowledge about the likelihood of actions 
enables modification of the dynamics of the input system, 
as demonstrated in [24]. Like our work, Williamson’s sys-
tem provides a way to synthesize feedback. However, the 
system design is quite different from the structure of con-
ventional user interfaces. Our architecture aims to provide a 
developer-facing API that is as similar as possible to con-
ventional interfaces, reducing the amount of developer ef-
fort needed for adoption. 

Existing Techniques for Communicating Uncertainty 
Communicating uncertainty in user interfaces is a tricky 
problem. When user input is ambiguous, users must under-
stand not only that their input is ambiguous, but also how to 
provide disambiguation. To be most effective, the disam-
biguation interface must be a continuous interaction stream: 
a rapid-fire conversation between human and computer. 

Examples of such fluid feedback mechanisms exist. In 
“Predictive Uncertain Displays” [23], Williamson uses in-
ference to continuously update a visual display of a user’s 
interpreted input. A similar approach is provided in Oc-
topocus [1] where the interface continually updates the like-
lihood of possible gestures and renders possible comple-
tions to the user. In text entry and speech recognition sys-
tems, a list of alternate interpretations is often presented to 
the user; an early example is the ViaVoice system [2]. In 
many cases, how an input is being interpreted can be am-
biguous. Wigdor [22] and Li [10] developed feedback 
mechanisms that show users how their touch inputs are be-
ing interpreted.  

When the data primitives themselves (e.g., the location of a 
mouse cursor, the width of an icon) are uncertain, prior 
work on visualization of uncertain information from the 
data visualization community may be used to communicate 
uncertainty (see for example [13]). This early work shows 
how drawing primitives such as contour crispness, fill clari-
ty, and blur can be used to communicate uncertainty. 

Single Document Model and Subjunctive interfaces. 
Modern user interfaces often maintain a single interface 
state accomplishing a single possible task. Therefore, to 
consider, e.g., alternate floor plans or different design 

 
Figure 2. Example scenario. Initially the interface is certain. 
User presses and drags on a draggable/resizable box. Touch 
event samples are dispatched to possible interfaces. Three 

varieties of interfaces are possible: (left) the user is not drag-
ging the box, but rather drawing a line, (center) the box is 

being resized, (right) the box is being dragged (a garbage can 
shows up, the user may drag to the trash to delete the box). 



 

choices, users must undo and redo their actions. This is 
called the single state document model [19], and makes 
working with alternate scenarios laborious. 

An alternative approach is to provide mechanisms for ex-
ploring multiple scenarios. In 2008, Lunzer coined the term 
Subjunctive Interfaces to describe interfaces that support 
the exploration of multiple scenarios [12]. For example, 
Side Views [20] is an interesting example of an early feed-
back technique that gave previews of the results of different 
choices a user may make (e.g., making text bold vs. italic). 
Feedback about possible actions gets displayed in an inter-
face as possible outcomes. In a similar vein Parallel Paths 
[19] presents a model of interaction that facilitates the gen-
eration, manipulation, and comparison of alternate solu-
tions. These lenses into other ‘possible worlds’ are reminis-
cent of Magic Lenses [4], though that work predates Lun-
zer. Additionally, Igarashi’s work on interactive beautifica-
tion [7] shows possible drawings (e.g., different snap tar-
gets, alternate interpretations) in a ghosted or dotted form, 
which can then be selected.  

The body of work in subjunctive interfaces is especially 
interesting because it provides a rich set of interaction 
techniques for interacting with alternatives beyond even 
what is explored in this paper. This paper focuses on fusing 
and presenting multiple alternatives, one of which is even-
tually selected to disambiguate input. In contrast, both Par-
allel Paths and the RecipeSheet [12] provide facilities for 
manipulating alternatives interpretations directly. The ideas 
presented in subjunctive interfaces contain a wide range of 
possibilities for future work.  

While the end results achieved by the methods described 
above look similar to many of the demos presented in this 
paper, the contribution of our work is different. These inter-
faces and interaction techniques are contributing just that: 
interface designs and interaction techniques. The contribu-
tion of this work is in an architecture that can enable simple 
construction of all of the interaction techniques presented, 
and more. Our architecture enables developers to easily 
experiment with different feedback techniques by allowing 
developers to easily switch between feedback methods, as 
well as develop new techniques. The task of analyzing in-
terface differences, selecting alternatives, and fusing alter-
natives is abstracted away, allowing developers to focus on 
the interaction logic and presentation layer of the interface.  

ARCHITECTURE DESCRIPTION 
In conventional interfaces, the state of a single interface is 
the basis of everything that is displayed to the user. More 
specifically, if we know the structure of the interactor tree 
and the values of its associated variables, we know the state 
of an interface and have all of the information needed to 
render it on the screen. A necessary precondition for our 
feedback system is to replace that single interface with a 
distribution (a probability mass function or PMF) over pos-
sible interfaces. There are several ways to obtain a distribu-

tion over possible interfaces, and we structured our archi-
tecture similarly to the method described by Schwarz et al 
in [18].  

In what follows, we describe both derivative work (which 
we compare to [18] in the text), and our feedback system, 
which is novel and the main contribution of this paper. We 
first describe the architecture we derived from [18] briefly. 
During event dispatch, this architecture tracks the probabil-
istic state of the interface and produces a probabilistic dis-
tribution of action requests representing the user’s intent.  

In a traditional non-probabilistic input system, the event 
dispatch process would have produced modifications to the 
interface as well as possibly the application. Typically, this 
would cause an interface to be drawn or redrawn based on 
the state and structure of the interactor hierarchy represent-
ing the interface. Essentially what a traditional system does 
is to take a tree representing the interface and render it on 
screen as an image. However, in our case there are multiple 
possibilities that need to be displayed, corresponding to 
possible intents of the user. We will describe our process 
for selecting representative examples from these multiple 
possibilities, combining them into a single tree, and render-
ing them on screen as feedback about uncertainty. A major 
contribution of this work is a flexible and interactive ap-
proach to doing this.  

The toolkit described here and in the next sections was im-
plemented in JavaScript and tested on the Google Chrome 
browser v37.0.2062.94. The toolkit uses a custom input 
dispatch pipeline, implemented by hooking into the normal 
input events available in the browser. The rendering system 
used in the toolkit uses SVGs, meaning that an interface 
draws itself onto an SVG element on an HTML page, 
which is then rendered by the browser. The system was 
developed and tested on a quad-core machine (2.3GHz 
each, Intel Core i7) with 16 GB of RAM. This consumer-
grade machine was able to run all the demos described in 
this paper with reasonable responsiveness, with a maximum 
input dispatch time of 300 ms.  

An Architecture for Tracking the User’s Intent 
To understand how these parts work together in the archi-
tecture consider the following setup (Figure 2): a user 
presses and drags with her finger on the edge of a draggable 
and resizable box (Figure 2, top middle). The interface also 
contains a ‘line brush’ which allows a user to draw straight 
lines. Initially the interface contains no ambiguity (Figure 2, 
top left), with the box in its neutral start state.  

The implementation used in this paper takes a Monte Carlo 
approach, modeling user input as a collection of event sam-
ples each representing different inputs the user may have 
intended [18]. Note that we make use of weighted samples, 
where a sample’s weight is an indication of its likelihood 
(an approximation of the probability that it is correct). For 
example, when the user presses her finger down, a collec-



 

tion of event samples representing an approximation of the 
distribution over possible locations is generated. 

Each event sample is dispatched to the (probabilistic) inter-
face to accumulate a new set of interface samples (probabil-
istic state for the overall interface) as well as a probability 
distribution over the actions that this would imply. To be 
more specific, we have one or more sample interfaces to 
which each sample event is dispatched (delivered to the 
appropriate interactor or interactors within the interface). 
We assume that the initial state of the interface is known. 

For each pair of interface sample and event sample, we cre-
ate a new interface sample that will process the event sam-
ple, and make requests for changes to the interface or appli-
cation. Note that clones preserve key properties of interfac-
es such as a unique ID for interactors and interactor proper-
ty values. Figure 2, bottom shows three possible samples 
that may be generated. 

Tracking sample interface alternatives greatly simplifies 
dispatch, since when a sample event is dispatched to a sam-
ple interface, that sample interface is able to operate in an 
apparently deterministic world (the one indicated by the 
sample(s) involved). Note that this is different from [18], 
which tracks samples over interactor state (separately for 
each interactor) within a single interface. 

When the dispatch of an input event sample to an interface 
sample causes an action (such as a visual change in the lo-
cation or size of the rectangle in Figure 2, or a change to the 
application state such as the deletion of the box), an action 
request is created which encapsulates the action [18].  Ac-
tion requests may be local (to the interface itself) or may 
encapsulate potentially irreversible final actions (e.g., 
changing the state of an application outside the interface 
itself) [18].  As with other Monte Carlo representations of 
distributions, each action request becomes a sample within 
that distribution and has an associated likelihood. Thus, the 
collection of all actions requests is a representation of the 
probability distribution over possible actions implied by the 
possible input events to the possible states of the interface.  

In the example in Figure 2, as the user drags her finger, a 
set of interface samples is tracked that produce action re-
quests for all of the possible actions the user intends. These 
potentially include multiple action requests representing 
different start and end points for drawing a line, resizing the 
box, and moving (dragging) the box across the screen.  

Going from Interface Samples to Feedback 
At this point, in a non-probabilistic input system, any side 
effects of events have been executed and the tree represent-
ing the interface would be rendered on screen. 

Instead, our feedback system goes through a four-stage pro-
cess (Figure 1). First, it is necessary to select what actions 
to execute (and execute them). This step, for example, may 
eliminate highly unlikely options. Second, it is important to 
reduce the probability distribution to a manageable number 

of exemplars for display to the user. Presenting feedback 
about all possible interfaces to the user could in many cases 
be confusing. Third, we fuse the exemplars into a single tree 
according to the feedback technique being used. Finally, 
this tree must be rendered on screen to reflect any uncer-
tainty to the user. Rendering is done in a conventional way 
and does not require any special infrastructure. 

Before describing this process in detail, it is important to 
understand how it fits into the overall event dispatch and 
redraw cycle of the system. Each time a new set of sample 
events produces a PMF over alternative interfaces, a new 
fused interface is displayed on screen. In other words, the 
fused interface exists only for the instant in time between 
one user action and the next. For example, while the finger 
is dragging across the screen in our running example, the 
user essentially is using a direct manipulation interface in 
which they can see and influence the impact of their actions 
as they act.  

Note that when an input event arrives, a feedback wrapper 
(present only in the fused interface) may elect to handle the 
input event and react to it rather than sending it to the prob-
abilistic input system. For example, if a user selects an item 
in an N-Best list by pressing with her finger, the interactor 
generated by the N-Best fusion technique (an N-Best Item 
Container) will set that alternative interface as certain. 

A major contribution of our work is our flexible approach 
to selection, reduction and fusion. Figure 1 shows the pro-
cess for reduction and fusion. Each stage of the process is 
pluggable in our system. 

Selecting Among Alternative Actions 
Once dispatch is complete for a given input event, a collec-
tion of action requests has been generated which can be 
programmatically examined. The selection phase can deal 
with situations when an action is obviously wrong or right 
(i.e. has a very high or low likelihood). We provide support 
for automatic mediation (following the methods described 
in [18] and [14]). 

Recall that actions are produced by interface samples, and 
represent a certain world view (with respect to that sample). 
Thus, to reject an action, we discard the action request and 
its associated interface state. This is the approach used 
when removing things that have very low likelihood.  

Handling of accepted actions depends on the nature of the 
action: When an action request is local, executing it will 
make necessary updates to its associated interface without 
affecting the application. Since this type of request does not 
modify the application, its effects can be undone simply by 
discarding the interface sample it acted upon. As a result, 
we allow multiple local actions to be accepted, meaning 
they are executed on their associated interface alternative. 
All changed interactors in the interactor tree are marked as 
changed during this process (including changes to the prop-
erties of any interactor or number of children). Figure 3 



 

shows the interactors that would be marked as changed for 
three alternative interfaces associated with the running ex-
ample in Figure 2. 

When an action request is final, that implies that the action 
will have an impact on the application state (e.g., saving a 
file, killing a process, etc.). If a final action is selected for 
execution, since the action is irreversible, the distribution 
across possible interface states must be reduced to a single 
interface resulting from executing that action alone. The 
decision about whether to accept any final actions is han-
dled by a pluggable automatic mediator [14], which checks 
to see whether multiple final actions with similar high like-
lihood are all present or not.  

When a final action is accepted, its associated interface 
alternative can be displayed without further modification 
and the system can wait for the next set of event samples. 
More typically there will be a large number of local actions 
whose associated interface alternatives need to be dis-
played, in which case we go on to the reduction step. A 
third possibility is that multiple final and local actions re-
main along with their interface alternatives, in which case 
we may show feedback about the alternatives but defer exe-
cution of the final actions until further user input arrives. 

Reducing the Set of Alternative Interfaces 
The result of executing multiple local actions in the Selec-
tion step is multiple interface samples. These represent a 
probability mass function (PMF) approximating the proba-
bility distribution over possible actions the user intends. In 
many cases, the number of interface alternatives exceeds 
what could reasonably be communicated to the user. There-
fore, our feedback system must reduce the number of inter-
face alternatives into a representative subset. The result is a 
new collection of alternate interfaces. In our example from 
Figure 2, the system feedback mechanisms choose to re-
duce all of the alternative interfaces to three different inter-
faces (Figure 2, bottom). These interface alternatives repre-
sent the major classes of actions possible in the system: 
drawing a line (Figure 2, bottom left); resizing the box via 
the handle on its edge (Figure 2, bottom middle); and drag-
ging the box (possibly to a trash can that appears in re-
sponse to the drag; Figure 2, bottom right).  

The reduction step takes a list of interface alternatives 
(weighted with likelihoods) as input and returns a new list 

of alternatives (weighted with merged likelihoods) repre-
senting a reduced set. We have implemented and experi-
mented with two reduction algorithms, however reduction 
is implemented in a pluggable fashion, allowing for other 
algorithms to easily be added. 

Our first method is to pick the N most likely alternatives 
and re-normalize the probabilities across those alternatives. 
While simple, this has the disadvantage of not representing 
a wide range of interfaces. For example, the top 10 alterna-
tives in Figure 2 might all be lines with slightly different 
start and end points. Showing only the top alternatives in 
this case would fail to convey the other possibilities. 

Another method we implemented is to group together inter-
face alternatives for which the same interactor or set of in-
teractors are changed, and then select or create a representa-
tive alternative interface for each group. The likelihood of 
the representative alternative for a group is the sum of the 
likelihoods of the samples it represents. In this method, all 
three alternatives at the bottom of Figure 2 would be pre-
sent in the reduced set of interface alternatives. For exam-
ple, a single representative line would be included which 
has a position that represents a merged version of the full 
set of lines, as described next.  

Although within a group the same interactors are changed, 
the specific details of those changes (represented as proper-
ty values associated with the interactors) may differ from 
one sample interface to the next. If we select a single sam-
ple interface, it may not have appropriately representative 
property values. Thus, we update each property value of 
each changed interactor using a pluggable merge function, 
which takes a set of (alternative_value, likelihood) pairs 
and reduces them into a representative value. For example, 
for a property whose value is numerical, one merge tech-
nique would be to take the weighted mean. We provide 
several basic merge functions for primitive variable types. 
Developers may provide new merge functions, as well as 
specify which merge function is used when.  

Fusion of Representative Interface Samples for Feedback 
Once a small number of representative interfaces have been 
created, the feedback system fuses these interface alterna-
tives into a single interface. More specifically, feedback 
mechanisms take in a PMF over interface alternatives (gen-
erated by reduction), fuse them in some way, and return a 
single interface that can be rendered to the user. This fused 
interface will include interactors copied from the repre-
sentative interfaces, as well as specialized container and 
wrapper interactors that implement specific feedback 
presentation techniques.  Figure 5 shows several sample 
fused interfaces.  

Our general approach to fusion involves defining what in-
teractors should be displayed, and how they should be dis-
played. The system walks down the interface hierarchy of 
the last certain interface. In tandem, it walks down the rep-
resentative interfaces producing a fused tree according to 

 
Figure 3. For each alternative in Figure 2, the system 

tracks which interactors in the hierarchy are different 
from the original (shaded in).  



 

rules that differ depending on the specific type of fusion 
strategy used. For example, when an interactor is selected 
for display in the fused tree, it can be placed inside a con-
tainer that implements the feedback mechanism in use. 
There are two primary types of containers that handle feed-
back. Grouping containers decide how to display a group of 
alternative interactors, while Wrapper containers modify 
the look and feel of a specific alternative that is being dis-
played to visually convey information (such as likelihood).  

As an example of how this works, consider the interface 
hierarchy that would result from the alternatives shown in 
our running example (Figure 2). Figure 4 shows the new 
interface hierarchy that would be generated as a result of a 
very simple feedback system that overlays all three sample 
interfaces, each placed inside a type of feedback (FBG) 
container that simply displays them appropriately to indi-
cate likelihood. The FBW containers in Figure 4 may 
change the opacity of their contents, for example. 

Interface developers may use existing fusion strategies or 
write their own. In this paper we will describe two general 
types of fusion strategies available in our library (along 
with several extensions of each strategy) that can be used to 
create a wide range of specific feedback techniques. Many 
more fusion strategies are possible and may be built by ex-
tending the default fusion object and implementing a func-
tion that takes as input a list of (interface alternative, likeli-
hood) pairs and returns a single interface. 

An important note is that this architecture does not require 
developers of interactors to consider the uncertain state of 
the interactor (or the uncertain state of other interactors) 
when drawing themselves. Interactors draw themselves as 
with conventional interfaces. Communicating uncertainty is 
instead handled by special interactors inserted into the new 
interface hierarchy which modify how their children are 
rendered (by, e.g., changing the opacity of all children 
based on the likelihood of an alternative). 

Our architecture provides a simple yet powerful method for 
generating feedback about uncertain interfaces. In the next 
section we describe a range of feedback techniques provid-
ed in our library. 

SPECIFIC FEEDBACK TECHNIQUES 
Our architecture enables a large number of feedback tech-
niques, ranging from simply overlaying alternative versions 

of interactors to showing an N-best list of alternative inter-
faces that allows a user to disambiguate their intent.  

These techniques can be grouped into three categories of 
fusion strategies. First, we discuss a technique that groups 
and alters the appearance of alternatives. Next, we discuss 
interactive feedback techniques that not only show alterna-
tives but also allow users to disambiguate intent. Finally we 
present contextual feedback selectors: a technique that 
picks which feedback object to use based on context. 

Grouping Alternate Interactors and Altering Appearance 
The first feedback category we explored centers around 
organizing similar interactors in the same grouping contain-
er and then applying wrappers to the alternatives that en-
code a wide range of visual feedback techniques. By de-
fault, these grouping containers are placed within a tree 
consisting of all of the interactors from the alternatives 
which are not changed. This ensures that the basic structure 
of the interface is visible in addition to feedback about un-
certain alternatives. The Feedback Group container (FBG) 
makes decisions about which alternatives to display when. 
This can include context and timing dependent selection of 
what to display.  

The Feedback Wrapper container (FBW) decides how to 
display alternatives. For example a wrapper might modify 
the transparency used when rendering an interactor (but 
otherwise leave its appearance unmodified), or it might 
extract some summary rendition (such as text or an icon) 
and display that instead of the normal presentation. Consid-
er our running example of a draggable and resizable box 
(Figure 2). Figure 4 shows the new interface hierarchy that 
would be generated as a result of grouping alternatives. 
Figure 5 shows a few of the variations that are possible in 
this approach, including overlaying all of the alternatives 
using opacity or blur to indicate likelihood and adding a 
decoration to indicate likelihood (progress bars). 

Our system provides generic versions of each type of con-
tainer, which can be subclassed to provide a range of feed-
back. For example, our library includes containers imple-
menting a variety different grouping techniques ranging 
from simply showing the most likely interface to overlaying 
all possible interfaces into a single interface. Below we 
describe some examples.  

Our library includes Feedback Wrapper objects that adjust 
the opacity, scale, blur, contrast, and saturation of interac-
tors based on their likelihood (Figure 5 shows a few exam-
ples using the running example in this paper). In addition to 
image adjustments, we can also render additional infor-
mation using the wrapper. For example, we implemented a 
‘progress bar’ style display that renders a bar indicating 
likelihood at the top left of its child.  

We used an opacity wrapper to implement a demonstration 
of Octopocus [1]. In our implementation, each recognized 
gesture alternative is delivered as an event alternative and 
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Figure 4. Interface hierarchy that would be generated as a re-
sult of grouping the alternatives in Figure 3. Numbers refer to 
the alternative the interactor came from. Alternative 0 is the 

most recent certain interface.  



 

creates an interface alternative as a result.  A ‘gesture in-
teractor’ in each alternate interface shows both the gesture’s 
past trail and its predicted completion path (as computed 
using the fitting algorithm described in [1]).  Each of these 
alternate interfaces (one for each alternatively recognized 
gesture input) is fused using the grouping technique, where 
the group simply overlays the interfaces and the wrapper 
simply adjusts opacity to reflect probability. This demon-
stration was implemented using a total of 140 lines of Ja-
vaScript, not including gesture recognition code. 

Animating among multiple versions of an interactor is an-
other way to indicate the range of uncertainty (this is briefly 
discussed in [13], but no implementation is presented). Our 
library includes Feedback Group containers that jitter or 
pulsate according to the number of alternatives in a group. 
Another animation technique fades between alternatives. 

To summarize, by grouping alternatives and wrapping them 
in a variety of pluggable containers, we can achieve a range 
of feedback effects. From the user’s perspective, this cre-
ates a feedback loop in which they can change their input 
(for example the shape of the gesture they are drawing) and 
monitor the system’s response, ensuring that the correct 
interpretation is primary. 

N-Best Lists 
The methods described above communicate uncertainty and 
allow the user to respond, but do not directly support inter-
action. In contrast, a traditional n-best list allows the user to 
directly select an alternative.  

This class of “N-Best List” feedback can take many forms.  
A simple and relevant example scenario is with gesture 
(Figure 6, Top). After the user completes a gesture, the ges-
ture recognizer may have produced several likely alterna-
tives. In this case, the interface may show an N-Best list 
illustrating the resulting interfaces that may occur as a re-
sult of her gesture (e.g., adding several shapes, or drawing 
to the screen in red ink). Note that this example shows just 
the immediate resulting shape. Many rendering choices are 
possible, such as showing the entire resulting interface 
(Figure 6, bottom left) or highlighting only the portions that 
would change (Figure 6, bottom right). 

Figure 7 shows the hierarchy generated as a result of fusing 
interface alternatives in our running example using an N-
Best list. Note that the root interface into which the N-Best 
list is fused is by default the most recent certain interface, 
although this may be modified by the developer (e.g., to 
show the alternative with the highest likelihood).  

The N-Best Item Group is responsible for rendering the 
remaining alternatives (i.e., the relevant portions of the N 
most probable interface alternatives) and providing a means 
for the user to select from among them. The display of each 
individual item is determined by the wrapper object placed 
over the subtree for the item. The N-Best Item Group han-
dles layout and scaling, so that for example a rendering of 
an entire alternative interface may fit within a small box 
within the N-Best list. The N-Best Item Group also pro-
vides a selection mechanism for picking from the items.   

Our implementation provides generic versions of the N-
Best list container, which can be subclassed to achieve a 
variety of effects. Our library of N-Best lists varies along 
three dimensions: how uncertainty is communicated, how 
alternatives are presented, and how alternatives are interact-
ed with. Below we give examples of demonstrations im-
plementing each of these design dimensions.  

 
Figure 6. Examples of different N-Best lists implemented using 
our system. Top: After executing a gesture, show possible alter-

natives. Bottom Left: Show entire interface. Bottom Right: 
Show entire interface and highlight changes. 

 
Figure 5. Three example renderings of the running example (Figures 2-5). Grey dots represent touch area, small dots represent 

touch samples. Alternative interfaces are rendered using: Left – opacity (the line is very unlikely, not visible); Center – blur; 
Right –progress bars (with all three interfaces overlaid). The draggable item and trash are most likely here.  



 

Adjusting Appearance to Communicate Uncertainty: As 
with the first category of feedback we described, our library 
includes subclasses of the N-Best Item Group and associat-
ed wrapper containers which cover a range of examples of 
how this approach may be used. By adding a Feedback 
Wrapper above each item, in an N-Best list can indicate 
likelihood using any of the methods described earlier (opac-
ity, blur, contrast, progress bar, etc.).  

What Information to Show: As mentioned above, the tree 
processing phase determines what elements are placed un-
der a given N-Best Item Group.  The group then determines 
how each interface alternative is rendered. For example, our 
library of generation classes for N-Best lists include placing 
in the group: 1) the entire interface of each alternative 
(Figure 6, bottom left), 2) only the portion of the interface 
that has changed (Figure 6, top), 3) the entire interface, but 
using wrappers to highlight changes (Figure 6, bottom 
right), or 4) a compressed view of only the leaf interactor 
that has changed (Figure 9, center). Note that in the case of 
(4) we currently require the interactor to provide a function 
for drawing itself in compressed form, though in future 
work, aspects of this could be automated. 

How to Disambiguate: As mentioned above, a fused feed-
back interface can handle input events to allow users to 
disambiguate intent. We have implemented techniques for 
selecting interface alternatives by: 1) selecting the alterna-
tive directly, 2) when dragging, crossing over an interface 
alternative to select it, and 3) using keyboard keys to select 
an alternative. When an alternative is selected, all compet-
ing alternatives are rejected. 

Contextual Feedback Selectors 
The feedback a developer may want to show may vary 
based on things like the degree of ambiguity between inter-
faces, the number of alternatives, which interactors are am-
biguous, the source of user input, and user behavior. For 
example, a developer may wish to show the single most 
likely interface when the system is confident, but show a 
list of alternate interpretations when several alternatives are 
likely. Similarly, a developer may wish to only show the 
top choice (a trivial form of feedback) unless the user hesi-
tates. Finally, feedback may be selected based on the type 
or ID of an interactor. 

To facilitate this, we developed several feedback generator 
objects of a class we call Contextual Feedback Selectors 
which make decisions about all or part of how they generat-
ed feedback based on contextual information. When asked 
to generate feedback, these objects first check contextual 
information, then select which of one or more actual feed-
back types to display. In other words, these feedback gener-
ator objects select among other feedback generator objects 
based on context. Of course, developers may extend and 
develop their own feedback generator objects, as with the 
rest of the components of the system. 

As part of the feedback library of our system, we imple-
mented a feedback selector object for each contextual piece 
of information mentioned above. One particularly useful 
selector is an object that only shows feedback when a user 
hesitates. This is sensed by looking for a pause in either 
finger or mouse motion (e.g., by comparing the current 
mouse position to a temporally smoothed position). By de-
fault, this feedback mechanism shows only the most likely 
interface. When a pause is detected, the feedback selector 
sends a synthetic input event to force interface update. The 
feedback selector then shows other possible interpretations. 

One example demonstration of this technique is probabilis-
tic text selection (Figure 8). Text is cumbersome to select 
on a mobile phone because of ambiguity between whether a 
press and drag indicates text selection or scrolling. We built 
a simple model measuring the likelihood of an intended 
scroll or text selection using simple gestural features 
(amount of vertical motion), and used this model to adjust 
the likelihood of action requests from the scroll view and 
underlying text view. As a result, the interface tracks both 
alternatives along with their likelihoods. This demonstra-
tion was implemented in 350 lines of code (including logic 
for tracking & rendering highlighted text, and scrolling). 

The feedback we developed is shown in Figure 8 at the top 
left. In this case, we have combined an N-Best list with a 
Context Feedback Selector object that only shows feedback 
when the user pauses (possibly indicating an incorrect 
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Figure 7. Interface hierarchy that would be generated as a 
result of making an N-Best list of alternatives in Fig 4.  

 
Figure 8. This touch interface disambiguates between 
when a user is scrolling or selecting text. Both alterna-

tives and their likelihoods are tracked (right). Likelihood 
is determined by finger motion. Initially, the most likely 
interface (text selection) is shown. After the user pauses, 

an option to scroll instead appears in the upper left.  



 

guess). The N-Best list is showing only one alternative (the 
other choice) and renders a small cue in the upper left, al-
lowing the user to switch to the alternate mode (scrolling).  

CASE STUDY APPLICATIONS 
In addition to the feedback techniques demonstrated above, 
we performed two case studies to demonstrate the value and 
test the feasibility of our approach. The first study is an 
exploration of feedback techniques in a predictive menu 
system, while the second is an implementation of a dia-
gramming application inspired by the ideas of Igarashi’s 
Interactive Beautification [7]. 

Predictive Menus 
Our predictive menu is an example of an adaptive user in-
terface. It uses a simple conditional probability table to 
guess which menu item a user intends to select, and allow 
him/her to more rapidly select the predicted item. Findlater 
and Gajos cover the design space of such adaptive interfac-
es and discuss evaluation issues in [5]. We used our feed-
back system to explore one design covered in [5] as well as 
two new designs. First, we overlay possible future menu 
selections on the menu (Figure 9, Right), adjusting the 
opacity so that likely items are highlighted. We also use an 
N-Best list showing possible menu items ordered by likeli-
hood (Figure 9, Left). A third design shows a compressed 
N-Best list (Figure 9, Center).  

Although the capabilities of predictive menus are fairly 
complex, our implementation is no more complex than that 
of a normal hierarchical menu. In fact, more complexity is 
devoted to the implementation of the hierarchical menu 
itself than to rendering predictions. In our demonstration, 
about 200 lines of code are used for interface setup and 
configuration, while 360 lines of code were needed for the 
hierarchical menu implementation (rendering, tracking 
which menus should be open, etc.). The drawing code for a 
menu item simply draws itself; it does not consider its like-
lihood, nor the likelihood of other alternatives. 

When a menu item is selected, the menu interactor deter-
mines a list of predicted future events (and likelihoods) and 
dispatches a new probabilistic event, which in turn gener-
ates a list of interface alternatives representing possible 
future menu selections. These alternatives are then dis-
played using one of the feedback methods we developed.  

This example demonstrates how complex interactions such 
as predicting future actions and showing possible comple-
tions can be accomplished using methods that are no more 
complex than those in existing interfaces. Our architecture 
handles the complexity of both tracking alternatives and 
(more relevant to the contribution of this work) fusing al-
ternatives to render feedback.  

Interactive Beautification of Touch Interfaces 
Inspired by Igarashi [7] and Lunzer [12] we built a touch 
interface for drawing diagrams (Figure 10). Users may 
draw rectangles or ellipses using free form gestures (e.g., 
draw a circle to make a circle) or by dragging a bounding 
box. They may also draw straight lines. Shapes and lines 
may be dragged and resized. When an item is dragged, a 
'remove' drag target appears on the bottom of the screen, 
but only for the interface alternatives containing a shape 
being dragged. A line’s endpoints snap to control points on 
shapes. If multiple snap points are possible, all alternatives 
are tracked. Items can be removed by being dragged to the 
bottom of the screen. When being dragged, appropriate 
feedback shows up indicating the remove region as a possi-
ble destination. Of course, the user may simply wish to 
place an item near the bottom of the screen. When multiple 
actions are possible the application shows the most likely 
action by default. When the user hesitates, the application 
shows an N-Best list. The user can then select one of the 
alternatives to disambiguate. This type of interaction would 
be very difficult to implement in a conventional user inter-
face framework. In fact, one would need to build something 
almost as complex as our general feedback architecture to 
properly handle all cases (such as, the remove button ap-
pearing only when draggable items are selected). In con-
trast, this application was written largely without regard to 
probability, and its fairly complex operation was described 
about 800 lines of JavaScript. 

CONCLUSION AND FUTURE WORK 
This paper presents an architecture for fusing a probability 
distribution over possible interfaces into a single interface 
that communicates uncertainty and allows for disambigua-
tion. We demonstrate the flexibility of our architecture with 
a collection of new and existing interaction techniques and 
two case study applications. Our work abstracts away the 
task of analyzing interface differences, selecting alterna-

 
Figure 9. Demonstration of several forms of interactive feedback in a predictive menu system built with our architecture. The 
user has moved his mouse over the Edit item; a predictive model computes likelihoods of subsequent menu items. Left: An n-

best list of the four most likely menu items is displayed. Users may select an alternative to jump to the interface alternative 
presented. Middle: A more compressed n-best list. Right: Every interface alternative is overlaid, opacity reflects likelihood. 



 

tives, and fusing alternatives, allowing interface developers 
to focus on interaction logic and presentation. 

The examples in the previous sections demonstrate some of 
the feedback techniques that our architecture supports. In 
the future we hope to expand our library of feedback tech-
niques, incorporating more work from the data visualization 
literature on portraying uncertainty, and allowing for inter-
face alternatives to be modified. Additional future work 
includes developing more sophisticated algorithms for in-
terface reduction (e.g., using clustering techniques to identi-
fy similar interfaces) and identifying differences between 
alternatives. By providing an architecture that enables de-
velopment of sophisticated feedback techniques for uncer-
tain user interfaces, this work is helping to lay the founda-
tion for a new era of nondeterministic user interfaces that 
leverage probabilistic models to better infer user intent. 
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Figure 10. N-Best list in drawing application. Left: User 
drags on an empty area; she may create a line, rectangle, 
or ellipse. Right: When adjusting endpoints, several snap 

points are possible (hollow circles).  


