

Phone as a Pixel: Enabling Ad-Hoc, Large-Scale
Displays Using Mobile Devices

Julia Schwarz1 David Klionsky1 Chris Harrison1 Paul Dietz2 Andy Wilson3
1Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA, 15213 USA
{julia.schwarz, dklionsk, chris.harrison}@cs.cmu.edu

2Microsoft Applied Sciences Group, 3Microsoft Research
One Microsoft Way, Redmond, WA 98052

{paul.dietz, awilson}@microsoft.com

 Figure 1. Phone as a pixel allows images to be rendered onto ad-hoc collections of small displays. From left to right: desktop moni-
tors at arbitrary positions, tablet with smartphones laid on top, a crowd of people with devices, smartphones arranged on a table.

ABSTRACT
We present Phone as a Pixel: a scalable, synchronization-
free, platform-independent system for creating large, ad-hoc
displays from a collection of smaller devices. In contrast to
most tiled-display systems, the only requirement for partici-
pation is for devices to have an internet connection and a
web browser. Thus, most smartphones, tablets, laptops and
similar devices can be used. Phone as a Pixel uses a color-
transition encoding scheme to identify and locate displays.
This approach has several advantages: devices can be arbi-
trarily arranged (i.e., not in a grid) and infrastructure con-
sists of a single conventional camera. Further, additional
devices can join at any time without re-calibration. These
are desirable properties to enable collective displays in con-
texts like sporting events, concerts and political rallies. In
this paper we describe our system, show results from proof-
of-concept setups, and quantify the performance of our ap-
proach on hundreds of displays.

Author Keywords: Crowd-computer interaction, ubiquitous
computing, distributed screens, computer vision, devices.

ACM Classification Keywords: H.5.2 [Information inter-
faces and presentation]: User Interfaces - Graphical user
interfaces. B.4.2 [Input/Output and Data Communications]:
Input/Output Devices - Image Display.
INTRODUCTION
Large-scale displays are compelling, but are generally im-
mobile, expensive, and time-consuming to set up. However,

most people have easy access to personal digital devices
such as laptops, tablets and mobile phones. Collectively,
these small displays can be used to create compelling, large-
scale displays in a crowd or at a large gathering, such as at
concerts, political rallies, or sporting events. Unfortunately,
crowds are highly dynamic. Users are unlikely to form per-
fect grids, space out with uniform density, and will come
and go as they please. Current systems for generating mosa-
ics from smaller displays generally require a static arrange-
ment of devices and calibration – almost always with spe-
cial hardware and/or software.

This paper presents an approach for enabling potentially
thousands of devices to be aggregated together as a collec-
tive display. Devices can have varying size and shape (Fig-
ure 1), and can join the display at any time in any location.
Further, the only requirement is that participating devices
have an internet connection and web browser. After present-
ing related work, we describe our system and evaluate the
performance of our approach on hundreds of displays,
showing that Phone as a Pixel is robust and immediately
feasible.
RELATED WORK
Combining (or “stitching”) many small displays to create a
larger display has been of interest to the research communi-
ty for some time (using e.g., manual alignment [3,9,18],
structured light [8,12], fiducial markers [4,15], device-
crossing pen strokes [6] and short-range infrared [9]). There
has also been significant interest in crowd interaction [1,2,5,
11]. Combining the two is an emergent domain due to the
recent proliferation of mobile devices with connectivity (see
e.g., [13,17] for extended discussion).

Of particular note is Blinkendroid [3], an open source An-
droid application that uses cross-device synchronization to
generate tiled displays and animations. However, devices
must be arranged in a strict grid, and are required to run

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

special software. Blinkendroid’s 2010 Guinness world rec-
ord of 72 phones in an animated mosaic took over an hour
to coordinate and setup (personal correspondence, Benjamin
Weiss, 9/14/11).

Junkyard Jumbotron [4] allows for arbitrary layouts of de-
vices, and, like our approach, also only requires devices
have a web browser. Schmitz et al. [15] also provide a
framework for multi-device displays and interaction using
either marker-based or manual calibration. The key differ-
ence is that these approaches use fiducial markers or manual
calibration. This provides a highly accurate registration of
each device, but requires a high-resolution camera if more
than a few dozen devices are to be used. As we will discuss,
our approach allows for devices to appear as small as single
pixels in our camera’s view, which could allow for tens of
thousands of devices to be used.

Most recent and similar is PixelPhones [8]. Devices are
synchronized with the camera (using the persistent Web-
Socket API available in HTML5), and flash a sequence of
black/white frames encoding their ID. This is feasible be-
cause devices connect to a dedicated webserver on the local
WiFi subset, affording low and consistent round trip times.

An alternative to using dense collections of high-resolution
displays is to use sparse collections of pixel-like devices [7,
14]. Although the expressive power of a single pixel is low,
when viewed collectively, they can form compelling ambi-
ent or aesthetic displays, and even interactive experiences.
APPROACH AND IMPLEMENTATION
Our system consists of a target image, a collection of client
display devices, a web server, and a camera. Each client
device is first navigated to a web page containing a Java-
Script application that controls all further client activity.
The client then requests a unique ID from the web server.
Once the client has received an ID, it flashes a color se-
quence on its screen, which encodes its ID (Figure 2, Left).

The camera tracks flashes emanating from each display
(operating in its field of view). From this, it can determine

IDs for all active devices in parallel, along with their cam-
era coordinates (Figure 2). For each device, a single color
value (RGB triplet) or region of a larger image (X/Y offset
and scale) is assigned. This data is sent to the web server
and saved. After each device finishes displaying its encoded
ID, it requests its data from the web server. If content has
been set, the flashing ID sequence ends and the desired out-
put is displayed. When using multiple devices, the target
image is rendered across many devices and on a larger scale
(Figure 2, Right).

So far, we have described color flashes that occupy the en-
tire screen. However, a client device can break up its dis-
play into multiple “virtual” screens, requesting a unique ID
for each of them (they, in turn, each flash a unique color
sequence). This effectively increases the resolution if using
single-color pixels. Also, since we did not have hundreds of
devices available for testing, this is also how we simulated
large-scale uses of our system.
Resolving IDs
We use the technique proposed in [10] to identify and local-
ize mobile phones. Our visual encoding scheme uses a de-
vice’s screen to flash a unique pattern of red, green, and
blue. Transitions from red to green, green to blue, and blue
to red denote a 1 in the bit sequence, while transitions in the
opposite direction denote a 0. Figure 3 offers an example
sequence. Color is determined using RGB Euclidian dis-
tance. Critically, because transitions are used, the devices
do not have to be synchronized among themselves or with
the camera, and can output their IDs at different rates.

The maximum frequency at which a device can make the
above color transitions depends on the available frame rate
of the camera. To guarantee a transition is not missed, the
ID transition rate must be no more than half the camera
frame rate according to the Nyquist Frequency [16]. Our
system, including some preliminary image processing,
achieves approximately 55 FPS. Thus, our device ID dis-
play rate has a theoretical maximum of 27.5 FPS (i.e., ID
bits/sec). We used 20 FPS during testing.

The camera treats every pixel in its field of view as though
it could belong to a device. Whenever one of the above col-
or transitions occurs in a pixel, the camera records the en-
coded bit in a sliding buffer for that pixel. Every frame, the
buffer for each pixel in the camera’s view is checked to see
if it fits the criteria for a valid device ID. If a valid ID is
detected for a pixel, the camera marks that pixel as belong-
ing to the device with that ID.

Figure 3: A device’s ID is encoded using color transitions.

Figure 2: Three frames on left: devices outputting their IDs over a one-second period. Right frame, tiled image output.

Due to noise in both the camera and the environment (e.g.,
pixels on color boundaries, occlusion by people walking by,
glare from indoor lighting, etc.), it is possible for the camera
to incorrectly capture or miss color transitions. In theory,
this could yield a false positive ID. To improve robustness,
the ID sequence is given a header. If there are n bits in the
ID, the header contains n zeroes followed by a 1. This
method eliminates nearly all-false positives ([10] found
similar performance). Additionally, there has been tremen-
dous work on bit sequence error correction over noisy
channels that apply to our approach (e.g., parity check, tur-
bo coding).
Assigning Content to Devices
Once the above approach has identified and localized a de-
vice, it needs to assign a color or image region. For single
color values, this is done by taking all pixels in the camera
image that match an ID, calculating the centroid, and using
the color at that location in the target image (Figure 1A, B).

Alternatively, part of a high-resolution image can be dis-
played (Figure 1D and 2). To do this, the camera's program
estimates how large the device screen is within the camera's
field of view. Since both the device screen size and the
camera screen size are known, this allows the camera to
calculate a scale at which that device should display its im-
age. The device’s centroid is used as the image offset.

Advantage of Communicating over Light
We chose to encode IDs using color transitions since, when
devices are very small or very far away, transitions will still
be visible to a camera. Indeed, devices could be as small as
one pixel, and still be identified and localized. A single
640x480 webcam could potentially digitize thousands of
devices. This scale is not possible with most other visual
encoding schemes such as fiducial markers [4,15].
Animation
Our technique can also be used to display animations, which
even when devices are sparse, appear as movement due to
apparent motion perceptual effects [19]. Animations would
be particularly compelling in a context like a stadium,
where a “wave” could sweep over thousands of devices.

To implement this, we send a sequence of colors to the de-
vices instead of a single color. The primary challenge for
animation is synchronizing individual devices, which we

accomplish by synchronizing all devices with our server.
This is done by averaging the offset between the server and
device clock at ten different points in time.
SYSTEM EVALUATION
To better understand the effectiveness of Phone as a Pixel,
we instrumented our code to measure how quickly our sys-
tem could identify individual displays. The setup for the
evaluation consisted of a single computer monitor with 100
to 1000 simulated device screens (increments of 100). Each
simulated display was a div element on an HTML page that
was assigned a unique ID and performed the same function
as an independent device would in the real world. The cam-
era code was instrumented to record the time at which each
ID was identified and a color calculated.

The results are shown in Figures 4 and 5. In nearly all cases,
the camera takes between 3 and 6 seconds to identify all
device IDs and calculate a color or image region for each
screen. Since the camera maintains a buffer of decoded bits
for every pixel in its field of view, we expected identifica-
tion time to be roughly constant as the number of simulated
screens increased, and the findings support this prediction.

The time between the camera program sending content as-
signments to the server and devices retrieving them is much
more variable. Some devices retrieve content data almost
instantly, while others can take upwards of 10 seconds for
the same task. We hypothesize these performance differ-
ences are caused by varying CPU speeds and wireless net-
work latency. These factors, while troublesome, lie outside
of our control. Further, they are the circumstances one
would encounter in real world deployments. Nonetheless,
our approach appears robust.
EXAMPLE APPLICATIONS
We built several example setups to demonstrate the feasibil-
ity of our system (see also Video Figure). Figure 1A illus-
trates rendering text across five desktop LCD displays, each
of which contained 100 simulated devices. From our sys-
tem’s perspective, this was no different than having 500
mobile devices. Figure 2 (right) shows a different set of
LCD displays, this time with a high-resolution image tiled
across them. Figure 1B illustrates rendering a low-
resolution image across 816 simulated screens on a table,
with two smartphones lying on top. Figure ID shows a high-
resolution image tiled over four devices resting on a table.

Figure 5: Average time (over three runs) to find the first and

last display, starting from the camera turning on.

Figure 4: Average time to find a percentage of total displays.

We were limited by what displays and devices we had
available in our lab. However, there are many interesting
real world uses for such a crowd display technology [1,2,5,
11,14,17]. As already discussed, this could allow for huge
distributed displays at events like company retreats, Olym-
pic events, and music performances.

Also interesting to consider is the fact that each person is
holding a highly capable mobile device (with connectivity).
Thus, users could not only “participate as a pixel”, but also
collectively control interactive elements. For example, im-
agine thousands of people tilting their devices (captured by
onboard accelerometers) to steer a digital “wave” across the
stadium. Or perhaps each person could vote for best per-
formance, the results of which could be displayed as a
crowd-sized histogram. Finally, because our approach re-
solves the location of each device (much higher resolution
than e.g., GPS, and works inside), people could be given
location specific information, such as nearby concession
stands or the fastest path to an exit.
LIMITATIONS
Phone as a Pixel has potential to bring collective displays to
reality, but it is important to note several factors that limit
the efficacy of our system in real-world environments.

Light: As commonly experienced, using LCD screens in
sunny, outdoor settings is challenging. Contemporary dis-
play technologies simply do not output enough lumens to
compete with the sun. This lack of contrast makes capturing
screen color-transitions difficult, even with high quality
camera equipment. As a result, for the time being, Phone as
a Pixel is best used indoors or in lower light conditions.

Glare: Light bouncing off the device’s screen can also
overwhelm the color transitions. Glossy screens, common-
place on mobile devices, have compounded this problem.
Fortunately, if a device has severe glare, it does not affect
the identification of other devices. Thus, in the worst case, a
device with glare simply doesn’t get utilized for the display.

User movement during recognition: As described previous-
ly, our system takes between 3 and 6 seconds to identify all
devices. If a user moves his or her device too much (an en-
tire device-width over) during the ID transmission period,
the camera will fail to identify a valid ID for the device. In
this case, the device will need to go through another round
(another ~3 seconds) before being identified. As a conse-
quence, users must be fairly still while registering their de-
vice. Recognition only fails if a user continuously moves
during several recognition periods. This rarely occurred
during our tests with multiple sets of users.

User movement after recognition: If people move after be-
ing assigned a color, the image or animation will begin to
break down. The only option in this case is to periodically
re-acquire device locations, which we implement through a
“reset” pushed from the server. However, with collective
displays, the focus is on the aggregate. Thus if a few people

wander, the overall image is not affected since hundreds of
others still make up the bulk of the display.
CONCLUSION
Phone as a Pixel is a technique for creating large, ad-hoc
displays using a collection or arbitrarily positioned, com-
monly available, consumer devices. Using a web server and
a camera, Phone as a Pixel can identify and locate displays
to create compelling, large-scale mosaics of pixels or imag-
es. Our system is scalable and cross-platform, allowing for
displays to be made up of thousands of individuals and
opening up opportunities for creating crowd-based displays.
REFERENCES
1. Barker, T., Haeusler, M.H., Maguire, F., and McDermott, J.

Investigating political and demographic factors in crowd based
interfaces. In Proc. OZCHI '09. 413-416.

2. Barkhuus,L. and Jørgensen, T. Engaging the crowd: studies of
audience-performer interaction. In Proc. CHI EA '08. 2925-2930.

3. Blinkendroid Project. http://code.google.com/p/blinkendroid
4. Borovoy, R. and Knep, B. Junkyard Jumbotron.

http://jumbotron.media.mit.edu
5. Brown, B., O'Hara, L., Kindberg, T., and Williams, A. Crowd

computer interaction. In Proc. CHI EA '09. 4755-4758.
6. Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P. and

Smith, M. Stitching: pen gestures that span multiple displays.
In Proc. AVI '04. 23-31.

7. LED Throwies. http://graffitiresearchlab.com/projects/led-
throwies

8. Lee-Delisle, S. PixelPhones. http://sebleedelisle.com/2011/09/
pixelphones-a-huge-display-made-with-smart-phones/.

9. Merrill, D., Kalanithi, J., and Maes, P. Siftables: towards sen-
sor network user interfaces. In Proc. TEI '07. 75-78.

10. Miyaoku, K., Higashino, S., and Tonomura, Y. C-blink: a hue-
difference-based light signal marker for large screen interaction
via any mobile terminal. In Proc. UIST ’04. 147-156.

11. O'Hara, K., Glancy, M., and Robertshaw, S. Understanding coll-
ective play in an urban screen game. In Proc. CSCW '08. 67-76.

12. Okatani,T. and Deguchi, K. Easy Calibration of a Multi-
projector Display System. Int. J. Comput. Vision, 85, 1 (Oct.
2009), pp. 1-18.

13. Reeves, S., Sherwood, S., and Brown, B. Designing for
crowds. In Proc. NordiCHI '10. 393-402.

14. Sato, M., Hiyama, A., Tanikawa, T. and Hirose, M. Particle
Display System - Virtually Perceivable Pixels with Randomly
Distributed Physical Pixels. Journal of Information Processing,
Vol. 17, 2009, pp. 280-291.

15. Schmitz, A., Li., M., Schonefeld, V., and Kobbelt, L. Ad-Hoc
Multi-Displays for Mobile Interactive Applications. In Proc.
Eurographics ’10. 45-52.

16. Shannon, C.E. Communication in the presence of noise. Proc.
Institute of Radio Engineers, 37, 1 (Jan. 1949), pp. 10–21.

17. Terrenghi, L., Quigley, A., and Dix, A. A taxonomy for and
analysis of multi-person-display ecosystems. Personal Ubiqui-
tous Computing, 13, 8 (Nov. 2009), pp. 583-598.

18. Welikesmall, Inc. iPod Wall. http://vimeo.com/13404489
19. Wolfe, J.M., Kluender, K.R., Levi, D.M., Bartoshuk, L.M,

Herz, R.S., Klatzky, R.L., and Lederman, S.J. 2006. Sensation
and Perception. Sinauer Associates, Sunderland, MA.

