

Probabilistic Palm Rejection Using Spatiotemporal
Touch Features and Iterative Classification

Julia Schwarz Robert Xiao Jennifer Mankoff Scott E. Hudson Chris Harrison
Human-Computer Interaction Institute

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213
{julia.schwarz,brx,jmankoff,scott.hudson,chris.harrison}@cs.cmu.edu

ABSTRACT
Tablet computers are often called upon to emulate classical
pen-and-paper input. However, touchscreens typically lack
the means to distinguish between legitimate stylus and
finger touches and touches with the palm or other parts of
the hand. This forces users to rest their palms elsewhere or
hover above the screen, resulting in ergonomic and usabil-
ity problems. We present a probabilistic touch filtering
approach that uses the temporal evolution of touch contacts
to reject palms. Our system improves upon previous ap-
proaches, reducing accidental palm inputs to 0.016 per pen
stroke, while correctly passing 98% of stylus inputs.

Author Keywords: Palm rejection; touchscreen; tablet
computing; touch interaction; pen and stylus input.
ACM Classification Keywords: H.5.2 [Information inter-
faces and presentation]: User Interfaces

INTRODUCTION
Tablet computers are often called upon to emulate classical
pen-and-paper input. However, most touch devices today
lack palm rejection features – most notably the highly
popular Apple iPad tablets. Failure to reject palms effec-
tively in a pen or touch input system results in ergonomic
issues [3], accidental activation and unwanted inputs, pre-
cluding fluid and efficient use of these input systems. This
issue has been well explored in the academic literature (see
e.g., [10,11,12,22]).

The contributions of this work are three-fold. Foremost, we
describe a novel, probabilistic approach to palm rejection.
Our system requires no initial configuration and is inde-
pendent of screen orientation and user handedness. Second,
we review contemporary palm rejection implementations
and compare our approach against two applications in a
user study, offering the first publicly available comparison
of such systems. Through our user study, we show that our
implementation offers equal or superior performance to
these applications.
We prototyped our approach on an Apple iPad 2 running
iOS 6 – a platform without native palm rejection or stylus
input. Our approach, however, is platform agnostic and will
work on any system that reports multiple touch contacts
along with location and touch area.

SPATIOTEMPORAL TOUCH FEATURES
Our work began with a series of observations of stylus use
on tablets. We identified five properties that distinguished
palms from pointer (i.e., finger or stylus) inputs: 1) the
touch area for palms tends to be large, whereas pointers
have small tips; 2) on most touchscreens, the large palm
contact area is segmented into a collection of touch points,
which often flicker in and out; 3) these palm points tend to
be clustered together, whereas the pointer is typically iso-
lated; 4) stylus touches have a consistent area, unlike palms,
which change in area as they deform against the screen; and
5) palms generally move little, while pointer inputs tend to
have longer, smoother trajectories.
Another insight was that there was often significant context
that existed before a touch point appeared on the screen.
For example, when dotting an ‘i’ the stylus touch might
only exist for 50ms – however, the palm might have been
on the display for several seconds beforehand. As our ap-
proach records all touch data, we can look backwards in
time to make a more confident classification.

Figure 1. An illustrated example of touches present at different points in time relative to a touch contact of interest (D, green
dot). Touch points due to palms (hollow circles) are often ephemeral, large, and have low velocity. Our approach extracts fea-
tures and performs classification of each touch point at several points in time (blue lines), using different sized time windows
(red). In this example, we show how the classification for the green dot only changes (purple text) as the window size changes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from permissions@acm.org.
CHI 2014, April 26 - May 01 2014, Toronto, ON, Canada
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2473-1/14/04 $15.00. http://dx.doi.org/10.1145/2556288.2557056

Using our observations as a starting point, we derived a
series of features that characterize touch points of interest
and their relationships to neighboring points1. These fea-
tures are computed over touch event sequences correspond-
ing to a particular touch contact (which we will eventually
need to categorize as either a stylus or part of a palm) and
occurring over windows of time, centered at t=0 (i.e. birth
of the touch point). We expand the time window symmetri-
cally about t=0, ensuring that data from before and after the
initial touch event are included (Figure 1).
Each touch event has a centroid position and a radius (indi-
cating the maximum distance from the centroid to the pe-
rimeter of the touch area). Our features consist of statistics
(mean/stdev/min/max) computed over sequences of touch
events corresponding to a particular touch contact for each
time window. We calculate these statistics for the radius of
each event and speed and acceleration of consecutive
events. Additional features include the total number of
events in the sequence and mean/stdev/min/max calculated
over the Cartesian distances between the centroid of the
touch event at t=0 and all touch events in any concurrent
sequences (belonging to other touch contacts). All of these
features are rotation and flip invariant. This should mini-
mize the effect of device and hand orientation, as well as
handedness, on classification.
Similar features have been used for other applications,
including finger angle estimation [25], thumb-driven inter-
actions [1] and more generally, finger pose estimation [20].
Wang and Ren provide a more complete overview of possi-
ble finger properties and related work [24].
To better understand which features discriminate palm from
stylus, we performed feature selection on our training da-
taset (11,373 instances collected from 3 people) using cor-
relation-based feature subset selection [8] with best first
search, provided in Weka [9]. We found that min distance
to other touches, number of touch events, and
min/mean/max/stdev of touch radius to be most valuable1.

ITERATIVE CLASSIFICATION AND VOTING
Our algorithm records all touch events reported by the
touchscreen. After a touch point has been alive for at least
25ms, the system classifies the touch as either “pointer” or
“palm”. If a touch terminates before 25ms has elapsed, it is
classified using all available data. At 50ms after birth, an-
other classification is performed. For every 50ms thereafter,
up to 500ms since birth, this classification repeats – each
time contributing a single “vote”. A temporary touch type,
either pen or palm, is assigned based on the majority of the
votes accumulated thus far. After 500ms, or if the touch
point disappears (whichever comes first), voting stops, and
the final vote is used to assign a permanent classification.
Note that the vote implicitly encodes a confidence score

1 See calc_features.cpp and classify.cpp in the supple-
mentary material for information about features and implementa-
tion details.

that can be used in probabilistic input systems (such as
those described in [21]).
One benefit of our iterative classification approach is that it
allows our system to show immediate feedback to the user.
The system initially shows its best guess (roughly 98%
accurate, see Figure 2) and refines this later as more infor-
mation becomes available. For example, if a touch is initial-
ly guessed to be a pen, the application will render a stroke
on canvas. If this guess is later changed, the stroke is re-
moved from the canvas.

TRAINING THE CLASSIFIERS
We trained eleven decision trees using the features de-
scribed in the previous sections with window sizes ranging
from 50 to 1000ms (i.e. classifiers triggered at 25ms, 50ms,
100ms, 150ms, etc. up to 500ms; see Figure 1). Each tree
was trained using touch features from all window sizes up
to the maximum window size. For example, the classifier
triggered at 200ms uses features obtained from window
sizes of 50, 100, 200, 300 and 400ms (windows are sym-
metric, centered on t=0). We used Weka [9] to train our
decision trees using the C4.5 algorithm [19].
We collected training data using a custom iOS application.
For each training instance, a 1cm radius dot was randomly
placed on the screen. Users were told to place their palms
on the screen however they saw fit, such that they could
draw a stroke of their choosing starting in this circle. This
procedure allowed us to collect labeled pointer and palm
point data. In total, we captured 22,251 touch event instanc-
es (of which 2143 are stylus strokes) from five people using
a variety of hand poses, tablet orientations, and handedness.
To estimate the effectiveness of our iterative approach, we
split our data into 11,373 training instances (from 3 people)
and 10,878 test instances (from 2 others). Figure 2 shows
test accuracy over increasing time windows. Classification
at t=1ms is included to approximate instantaneous classifi-
cation. Accuracy improves as window size increases, plat-
eauing around 99.5% at 200ms. We continued classification
out to 500ms for experimental reasons, but as Figure 2
shows, the main gains occur in the first 100ms. This result
underscores the importance of leveraging temporal features
and also delaying final classification.
As shown in Figure 2, performing classification instantly
(at t=1ms) yields a classification accuracy of 98.4% (kap-
pa=0.79). This is sufficiently accurate that real-time graph-

Figure 2. Classification accuracy (true positives) over

different durations of time. Leftmost point is at t=1ms.

ical feedback can be rendered immediately while only occa-
sionally requiring later reversion. Reclassifying at 50ms
reduces errors by 44%. By continuing iterative classifica-
tion and voting up to 100ms, accuracy increases to ~99.5%
(kappa=0.94), cutting the error rate by a further 29%.
RELATED SYSTEMS
Many palm rejection approaches – utilizing hardware, soft-
ware, and combinations of the two – have been created,
which we now review to position our work.
Hardware Approaches
The most reliable way to disambiguate stylus input from
human input is to use special hardware. For example, ultra-
sonic transducers can be placed at the periphery of a screen
to sense ultrasonic pulses emitted by an active pen (see e.g.,
[16]). It is also possible to use an infrared emitting pen and
two or more cameras to triangulate the planar position on a
screen (see e.g., iPen 2 [13]). The Jot Touch [14] uses a
passive capacitive tip, which simulates a finger touch. The
pen itself is powered and pressure sensitive, sending data to
the device over Bluetooth. With timing information, it is
possible to associate touch events with pen down events.
Another approach, popularized by Wacom, uses resonance
inductive coupling [5], which uses a special pen and sensor
board that operates behind the conventional capacitive
touchscreen. This technology is used in devices such as the
Microsoft Surface and Samsung Galaxy Note. Similarly,
Gauss-Sense [15] uses a grid of Hall effect sensors behind
the touchscreen to sense the magnetic tip of a special pen.
LongPad [7] used a grid of infrared proximity sensors and
computer vision to separate palm and finger inputs. Finally,
advanced capacitive touchscreens can differentiate passive
styli by looking at contact size and capacitive properties [2].
Even with special hardware for stylus support, simply dis-
tinguishing pen from finger is insufficient if the finger can
still be used for input. In this case, unwanted palm touches
may still be interpreted as finger touches in the absence of
the pen. Thus, software is still needed to reliably distinguish
pens and fingers from palms, which the above solutions do
not address.
Software Approaches
Although special styli tend to offer excellent precision, a
significant downside is the need for a special purpose ac-
cessory, which is often platform-specific. Further, addition-
al internal hardware is often required to support these pens,
adding to the build cost, size and power draw of mobile
devices. Thus, a software-only solution, which can be easily
deployed and updated, is attractive. Further, software solu-
tions offer the ability to disambiguate between finger and
palm input. However, without an innate way to disambigu-
ate touch events, software solutions must rely on clever
processing or interaction techniques.
For optical multi-touch devices, one approach is to identify
palm regions visible from the camera image [6]. On mobile
devices with capacitive screens, the task is more challeng-
ing, since applications generally do not have access to a

hand image, or even the capacitive response of the touch
screen. Instead, applications must rely on information about
touch position, orientation (if available), and size. There are
dozens of applications in the iOS and Android app stores
that claim to have palm rejection features. Unfortunately,
implementations are proprietary, precluding direct analysis.
One method applications employ is to specify a special
‘palm rejection region’ where all touches are ignored [17],
though this is unwieldy. Unfortunately, palm touches out-
side the input region can still provide accidental input (e.g.
accidental button presses). Vogel et al. [23] makes use of a
more sophisticated geometric model to specify the rejection
region, providing a five-parameter scalable circle and pivot-
ing rectangle, which captures the area covered by the palm
better than a rectangular region.
A second approach uses spatiotemporal features – looking
at the evolution of touch properties and movement over a
short time window. We hypothesize that applications that
first draw, then remove strokes, must wait some period of
time before detecting accidental touches. Two applications
exhibiting this behavior include Penultimate [18] and Bam-
boo Paper [2]. Both applications require the user to specify
information their handedness and use the tablet in a fixed
orientation, neither of which our method requires. Addi-
tionally, Penultimate requires users to specify one of three
handwriting poses they use.

USER STUDY
To assess the performance of our palm rejection approach,
we compared against Penultimate and Bamboo Paper. As of
September 2013, both of these apps have been featured in
the Apple App Store, and were subjectively judged by the
authors to have the best palm rejection out of 10 candidate
applications tested.
We recruited 10 participants from our lab (3 female, one
left-handed, mean age 29), who were paid $5 for their time.
Users were provided a passive, rubber-tipped stylus, which
is the most popular style for use with the iPad. The task was
to replicate 15 symbols presented on cards. Participants
were instructed to draw each symbol with a single stroke. If
the application missed the stroke, they were told to continue
to the next symbol. They were allowed to rest their hands
on the screen, and to lift, slide and otherwise reposition
their palm however they saw fit during drawing.
Six symbol sets, representing a variety of 1D and 2D shapes
(the letter ‘S’, a circle, a dot, a horizontal and vertical line,
and the letter ‘L’), were presented in random order. This
procedure was repeated for the three applications – Bam-
boo, Penultimate, and our own – in a random order. Bam-
boo and Penultimate were each configured for the user’s
handedness and preferred handwriting pose before the ex-
periment; our application did not require configuration.
After each symbol set was drawn, the experimenter record-
ed the number of strokes that were successfully drawn (true
positives), as well as the number of extraneous strokes
(typically under the palm) that were drawn (false positives).

This procedure provided 90 stroke attempts per user per
application, for a total of 2,700 strokes. We did not record
true/false positives for palm classification because it was
not feasible to collect ground truth palm data.

RESULTS
Our approach has a true positive rate of 97.9%, compared to
Bamboo’s 98.0% and Penultimate’s 90.1% (Figure 3). This
outcome is not significantly different from Bamboo Paper,
but both Bamboo and our approach are significantly more
accurate than Penultimate (p < 0.05). Statistical significance
was assessed by running a repeated measures ANOVA
(F2,18 = 20.53, p < 0.05), followed by a Tukey HSD test.
Additionally, our approach has fewer false positives than
Bamboo and Penultimate: 0.016 errors/stroke vs. 0.086 and
0.050 respectively (Figure 3). The difference between our
approach and Penultimate was not significant, though our
false positive rate was significantly lower than Bamboo
(Tukey HSD p < 0.05; ANOVA F2,18 = 5.09, p < 0.05).
Although our system performs with accuracy equivalent to
Penultimate, it does not require information about hand
position (unlike Penultimate). We believe two things con-
tributed to this robustness: we collected training data that
represented a wide range of poses; and, as mentioned
above, we designed our feature set to be hand invariant.

CONCLUSION
In this work, we described a palm rejection technique utiliz-
ing temporal features, iterative classification, and probabil-
istic voting. We demonstrate the efficacy of our solution
with an evaluation, which showed improvements over pop-
ular applications considered to be the current state of the
art. Finally, our approach provides a basis for future re-
search efforts in palm rejection.

ACKNOWLEDGEMENTS
This work was funded by NSF Grant IIS1217929, and fel-
lowships from Microsoft Research, Google and Qualcomm.

REFERENCES
1. Boring, S., Ledo, D., Chen, X., Marquadt, N., Tang, A. and

Greenberg, S. The fat thumb: using the thumb's contact size
for single-handed mobile interaction. In Proc. MobileHCI
‘12, 39-48.

2. Bamboo Paper. Wacom. http://bamboopaper.wacom.com.
3. Camilleri, M., Malige, A., Fujimoto, J., Rempei, D. (2013).

Touch Displays: the effects of palm rejection technology on

productivity, comfort, biomechanics, and positioning. In
Ergonomics. Taylor & Francis Group.

4. ClearPadTM Series 3. http://synaptics.com/solutions/
products/clearpad

5. EMR® Technology. Wacom. http://www.wacom-
components.com/english/technology/emr.html.

6. Ewerling, P., Kulik, A, Froehlich, B. Finger and hand
detection for multi-touch interfaces based on maximally
stable extremal regions. In Proc. ITS ‘12, 173-182.

7. Gu, J., Heo, S., Han, J., Kim, S. and Lee, G. LongPad: a
touchpad using the entire area below the keyboard of a lap-
top computer. In Proc. CHI '13, 1421-1430.

8. Hall, M.A. Correlation-based Feature Subset Selection for
Machine Learning. Ph.D. Thesis, 1998. Hamilton, New
Zealand.

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P. and Witten, I.H. The WEKA data mining soft-
ware: an update. SIGKDD Explorations, 11(1), 10-18.

10. Hinckley, K. and Sinclair, M. Touch-Sensing Input Devic-
es. In Proc. CHI ‘99, 223-230.

11. Hinckley, K., Wigdor, D., (2012). Input Technologies and
Techniques (Chapter 9). In The Human-Computer Interac-
tion Handbook, 3rd Edition, published by Taylor & Francis.

12. Hinckley, K., Yatani, K., Pahud, M., Coddington, N., Ro-
denhouse, J., Wilson, A., Benko, H., and Buxton, B. Pen +
touch = new tools. In Proc. UIST ‘10, 27-36.

13. iPen 2. Cregle Inc. http://www.cregle.com/pages/pressure-
sensitive-stylus-for-your-imac-and-ipad.

14. Jot Touch. Adonit . http://adonit.net/jot/touch
15. Liang, R., Cheng, K., Su, C., Weng, C., Chen, B. and

Yang, D. GaussSense: attachable stylus sensing using
magnetic sensor grid. In Proc. UIST ‘12, 319-326.

16. MyNote Pen. http://mynote.eu/mynotepen-en.html.
17. Notability Ginger Labs. http://www.gingerlabs.com.
18. Penultimate. Evernote. http://evernote.com/penultimate.
19. Quinlan, J. R. C4.5: Programs for Machine Learning.

Morgan Kaufmann Publishers, 1993.
20. Rogers, S., Williamson, J., Stewart, C. and Murray-Smith,

R. AnglePose: robust, precise capacitive touch tracking via
3D orientation estimation. In Proc. CHI ‘12, 2575-2584.

21. Schwarz J., Hudson S., Mankoff, J. and Wilson, A.D. A
framework for robust and flexible handling of inputs with
uncertainty. In Proc. UIST ‘10, 47-56.

22. Steimle, J. (2012). Survey of Pen-and-Paper Computing. In
Pen-and-Paper User Interfaces (pp. 19-65). Springer Ber-
lin Heidelberg.

23. Vogel, D., Cudmore, M., Casiez, G., Balakrishnan, R. and
Keliher, L. Hand occlusion with tablet-sized direct pen in-
put. In Proc. CHI ‘09, 557-566.

24. Wang, F. and Ren, F. Empirical evaluation for finger input
properties in multi-touch interaction. In Proc. CHI ‘10,
1063-1072.

25. Wang, F., Cao, X., Ren, X. and Irani, P. Detecting and
leveraging finger orientation for interaction with direct-
touch surfaces. In Proc. UIST '09, 23-32.

Figure 3. Stroke recognition accuracy and errors per stroke
results from our study. Error bars reflect standard error.

