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ABSTRACT 
Current input handling systems provide effective techniques 
for modeling, tracking, interpreting, and acting on user 
input. However, new interaction technologies violate the 
standard assumption that input is certain. Touch, speech 
recognition, gestural input, and sensors for context often 
produce uncertain estimates of user inputs. Current systems 
tend to remove uncertainty early on. However, information 
available in the user interface and application can help to 
resolve uncertainty more appropriately for the end user.  

This paper presents a set of techniques for tracking the state 
of interactive objects in the presence of uncertain inputs. 
These techniques use a Monte Carlo approach to maintain a 
probabilistically accurate description of the user interface 
that can be used to make informed choices about actions. 
Samples are used to approximate the distribution of 
possible inputs, possible interactor states that result from 
inputs, and possible actions (callbacks and feedback) 
interactors may execute. Because each sample is certain, the 
developer can specify most of the behavior of interactors in 
a familiar, non-probabilistic fashion. This approach retains 
all the advantages of maintaining information about 
uncertainty while minimizing the need for the developer to 
work in probabilistic terms. We present a working 
implementation of our framework and illustrate the power 
of these techniques within a paint program that includes 
three different kinds of uncertain input.  

ACM Classification: H.5.2 [Information interfaces and 
presentation]: User Interfaces - Graphical user interfaces. 
General terms: Human Factors 
Keywords: Probabilistic Modeling, Uncertain Input, Dialog 
Specification, Finite State Machines. 

INTRODUCTION 
Advances in input methods such as touch, pen gestures, in-
air interaction and speech recognition have begun to turn 
the promise of natural user interfaces into reality. 
Unfortunately, these input modalities are inherently 

uncertain. Most interface toolkits assume that input 
occurred exactly as reported. As a result, any uncertainty in 
input must be resolved quickly and often simplistically. For 
example, traditional input systems often treat touch input as 
a single point (the centroid of the touch region) instead of a 
touch area. Because the center of the touch area may not be 
over the user’s intended target, small differences in position 
can lead to big errors and a stunted user experience.  

Handling uncertain input is a multifaceted problem that 
includes mechanisms for modeling uncertain input, 
deciding which interactive element(s) an input gets 
dispatched to, interpreting input with respect to interactive 
state, and mediating between alternative interpretations to 
decide which actions to execute and/or feedback to show. 
Past work has focused on mechanisms for modeling and 
dispatching uncertain input [18] and resolving uncertainty 
[11]. In this paper, we focus on how to interpret uncertain 
input with respect to interactor state and on giving 
appropriate feedback to accurately reflect this uncertainty.  

Because user input takes place over the course of a 
sequence of events, interactors must be able maintain 
internal state across the delivery of events. State machines 
are a convenient mechanism for modeling state that many 
interactors use implicitly, if not explicitly.  

We show how to automate the process of tracking uncertain 
state for each interactor, while requiring developers to only 
provide a deterministic state machine description. A 
developer also specifies when an interactor should provide 
feedback or invoke callbacks, but must encapsulate these 
actions in action requests rather than executing them 
directly. These small changes allow the framework to 
automatically track the probabilities of multiple alternative 
interactive states as inputs arrive, and correctly update state 
as decisions are made about alternative actions. 

MONTE CARLO APPROACH 
Our approach uses Monte Carlo methods [13]. Monte Carlo 
methods span a range of specific techniques but share the 
property that probability distributions are approximated by 
a set of samples over that distribution. This allows 
operations on the distributions to be approximated by 
carrying out the operations on each sample, without an 
analytical characterization of the operations. We use this 
property to transform the operations of conventional event 
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handling from a definite computation into the equivalent 
operations working on probability distributions. Our system 
uses samples to approximate uncertain probability 
distributions in three places: input events, interactor state, 
and potential actions. When we combine (definite) event 
samples with (definite) state samples, we can compute 
(definite) action samples representing potential actions the 
interface may take. All of this is handled by applying 
conventional event handling operations to individual 
(definite) samples. Uncertainty only needs to be considered 
where specialized feedback of ambiguity is desired or a 
decision between alternative actions must be made. Note 
that unlike some Monte Carlo techniques, our approach is 
not performing simulation. Rather, live user input is used to 
track the probabilities associated with ongoing interactions. 
Additionally, our implementation does not use knowledge 
about prior distributions of input, state, or action, though 
our framework does not preclude this. 

MOTIVATING EXAMPLE 
To concretely illustrate our contribution, consider the 
gesture-based painting program shown in Figure 1 and 
implemented using our framework. In the scenario depicted 
here, the user executes a circle gesture on a paintable 
canvas, but happens to starts the gesture over a moveable 
icon (a ‘house stamp’). The canvas in this example 
responds to seven different gestures, each represented as a 
state in its state machine. These are listed in Figure 1 as 
‘circle’, which creates a new stamp, through ‘help’ (see 
Figure 8 for a full list of gestures and their resulting 
actions). The canvas’ state machine also tracks whether the 
user is painting on the canvas (the ‘moving’ state). The 
moveable icon in Figure 1 (the ‘house stamp’) can either be 
moved (‘moving’ state, see Figure 2) or clicked on, which 
copies an image of the stamp to the canvas (‘down’ state). 
When the stamp is dragged, it updates its position (which 
can be modeled as a state variable) after each move event. 
As the user is executing the circle gesture, the framework 
simultaneously tracks the possibility that the house stamp is 
‘moving’ (indicating a possible drag), that the user is 

drawing on the canvas, and that the canvas is receiving a 
gesture. No irreversible changes are made because it is 
unclear which state is correct. Initially, the likelihood that 
the icon is in the moving state is high (Figure 1, left). As 
the user continues, the likelihood of executing a ‘c’ gesture, 
and moving the house stamp are approximately the same, 
and this uncertainty is reflected in the feedback (Figure 1, 
middle). As the user finishes the gesture, the likelihood that 
the icon is in the moving state decreases and the likelihood 
that the user is making a circle gesture increases to 0.87 
(Figure 1, right), causing the circle feedback to be most 
salient, and the stamp drag feedback to disappear. Our tool 
automatically tracks these probabilities for the developer, 
allowing her to focus on other aspects of interaction.  

RELATED WORK 
Past tools for managing uncertainty fall into two categories. 
One set of tools has sophisticated support for merging input 
from multiple uncertain modalities. Bourguet developed a 
tool for visually specifying how multimodal input should be 
interpreted using state machines [2] while xml-based 
languages have been used to specify the relationship 
between incoming event triggers and outgoing actions [5]. 
In each case, the specification focuses on the flow of 
interaction through an overall dialog with the user, as 
opposed to the details of how each individual interactor 
operates (e.g., [4]). By combining modalities, it has been 
shown in multiple domains that it is possible to gain new 
evidence for disambiguating the interpretation of uncertain 
input (e.g., text input [7], speech [15], and multimodal input 
[17]). This research typically assumes that all of the 
uncertainty will be resolved before any input reaches a 
specific interactor (or the application proper). As a result, 
the uncertainty does not integrate smoothly with our well 
evolved and familiar GUI interaction techniques.     

Another approach (the one taken here) attempts to manage 
uncertain input within a general model which is based on 
mainstream approaches for input handling. In prior work 
we have explored several of the sub problems of modeling 
and dispatching uncertain events (input modeling, dispatch, 
action, feedback and mediation) [18]. Mankoff et al. outline 
basic aspects of modeling input and provide a mechanism 

 

 

Figure 2: The state machine used by the house stamp. 
Each transition is annotated with type:predicate 
{optional parameters}. Type is the event the transition 
fires on, the predicate checks for any additional 
requirements. Optional parameters include upd (an 
update method for updating state variables), fb (a 
feedback method for displaying feedback to the user), 
and act (an action method). 

 

Figure 1: Screenshots from application built using our 
system. (left) User starts a circle gesture over a 
moveable icon (dotted circle indicates touch location). 
(middle) User begins the circle gesture. The system 
indicates a possible drag and a possible C gesture as 
equally likely. (right) User completes circle gesture. 
The system recognizes the circle as the most likely 
interpretation. Note: The state probability information at 
the left is for illustration and is not part of the interface. 
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for dispatching and mediating ambiguous input [10, 11]. 
However, little work has explored managing interactive 
state. Hudson and Newell address this problem in [8], 
outlining a theoretical approach for tracking interactive 
state given uncertain input. However, this approach is not 
fully integrated with other aspects of input handling and has 
not been implemented. Moreover, the approach discussed in 
[8] restricts computational power to strict regular languages 
and thus may present difficulties in practical use. This paper 
builds directly on ideas in [8, 10, 11, 18]. 

In the next section we present an overview of our 
framework, focusing on the main contributions in this 
paper: our approach to tracking and managing uncertain 
state within interactors, without requiring interactor 
developers to think probabilistically. The framework we’ve 
designed uses the concepts introduced in [18] as a starting 
point and expands on issues concerning state maintenance. 
As validation we then briefly describe our implementation 
and a set of sample interactors we built using probabilistic 
state machines. Our examples illustrate the power of our 
framework, which brings us one step closer to developing 
an end-to-end system for handling uncertain input. 

FRAMEWORK OVERVIEW 
As illustrated in Figure 3 the overall framework we operate 
in has six components, each of which includes multiple 
steps. (1) First is modeling uncertain input (which produces 
many event samples). (2) As shown at top of Figure 3, these 
samples are dispatched to interactors. (3) Next, the 
framework tracks the internal state of interactors (Figure 3, 
bottom left). (4) This produces action/feedback requests. (5) 
Mediation aggregates and selects among these requests 
(bottom right). (6) Finally, a state update process ensures 
that interactor state correctly reflects the fact that certain 
actions were selected over others. 

Modeling: As with conventional input, uncertain input is 
modeled using events. However, these events may be 
probabilistic in nature, and may contain probabilistic 

properties. In the example in Figure 1, the user’s input is 
modeled as a set of alternative events (including gesture 
and touch events). The gesture events are represented as a 
distribution over possible gestures (circle, t, x, c, g, b, and 
help) and the location of touch events is represented as a 
distribution over possible x, y positions (in this case derived 
from the touch centroid using a 2d Gaussian function). 

Dispatch: Given a representation of uncertain input, the 
framework needs to deliver, or dispatch, that input to 
interested interactors. Details about user input such as its 
type and location are traditionally used during dispatch to 
make decisions about which interactors should receive each 
event. Since this information may be uncertain, our dispatch 
process must be probabilistic in nature. To reflect 
uncertainty about which interactor will consume an event 
sample, the system splits each event sample into several 
based on the set of interactors that want to consume it. Each 
split sample is weighted based on the probability that it is 
consumed. For example, in Figure 1, the user’s input is 
modeled using a number of samples (representing possible 
locations and gestures). Each of these samples is split in 
two (one delivered to the canvas and one to the house 
stamp, each weighted with the probability of that dispatch).  

Maintaining State: As event samples are delivered, each 
interactor needs to maintain its own interactive state. Since 
the interactor’s state is based on multiple uncertain prior 
inputs, it is probabilistic. The distribution across possible 
interactor states is represented as a collection of samples. 
Each state sample includes a current state (such as “start” or 
“moving”) and values for any variables associated with the 
state machine. Operation of a probabilistic state machine 
based on these samples is a central focus of this paper and 
is described in detail in later sections. Figure 2 shows the 
state machine for the house stamp in Figure 1. 

Action Request: Each state machine transition may have 
an associated action. When an input event sample causes a 
transition with an associated action, an action request 

 
Figure 3: Overview of processing steps within the input framework. 
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sample is generated to request that some action be taken. 
Action request samples are conceptually related to 
command objects [14] and contain information about the 
action, such as a method to carry it out as well as its 
likelihood. For example, when the user lifts his finger, the 
canvas interactor will transition to a state indicating a 
completed circle gesture. This in turn causes an action 
request sample to be generated that will create a new stamp 
if invoked. Because interactors are uncertain about their 
actual state, many possible action samples may be 
generated for each uncertain input event that is dispatched. 
This collection of action samples represents a probability 
distribution across possible actions the system might take.  

Actions may have permanent consequences and/or effect 
future interactors, or may only produce feedback and not 
affect future interactions. We call these two forms of 
actions final and feedback actions respectively. For 
example in Figure 1, the user’s stroke is shown as feedback, 
as is a circle and a semi-transparent indication of the 
house’s potential new location. When the user lifts her 
finger, both the canvas and stamp send final action samples 
to create a house stamp and copy an image to the canvas, 
respectively. 

Mediation and Action: Mediation is a decision process that 
determines which action request samples (if any) to invoke 
(accept) and which to reject. In addition to a probability 
estimate for each action sample, the system tracks which 
requests are compatible with each other, and which are 
mutually exclusive, to aid in mediation. Mediation 
processes are considered in detail in [11] and we borrow 
those approaches as a starting point for the work here.  

Our default mediator permits all feedback requests. For 
action requests, the mediator selects the most probable 
action, which (in the case of Figure 1) creates a new stamp.  

State Update: When a final action request is accepted, this 
implies that the system has decided to act based on one 
interpretation of the inputs. Other interpretations may not 
be compatible with this action. The process of state update 
removes any state samples which are incompatible with an 
accepted action, leaving each interactor’s state machine in a 
less ambiguous state. For example, when the circle gesture 
is completed and acted upon in Figure 1, all state samples 
representing other possible gestures will be removed.  

To summarize, our framework takes a probabilistic event, 
generates event samples, and dispatches each sample to 
various interactors which might receive the input. These 
interactors track their state using state samples and generate 
potential action samples. The mediation system decides 
which (if any) action samples to execute, and interactive 
state is updated accordingly. Collectively, these samples 
represent a distribution across input events, interactive 
state, and action. However, individually these samples can 
be treated by developers as deterministic since they each 
encapsulate a set of specific values. 

MONTE CARLO METHODS FOR MANAGING STATE 
AND ACTION UNDER UNCERTAINTY 
In this section we discuss the details of the framework 
described above. We show how our framework manages 
sampled input, state, and actions to accurately track 
uncertainty throughout the input handling process.  

Modeling Events 
As with conventional input, probabilistic input is modeled 
using event records. Roughly following the approach in [8], 
a distribution across alternative events is indicated by 
assigning a weight to each event alternative, reflecting the 
probability that this alternative is the true input. Extending 
[8] (and following [18]), however, we also allow properties 
of each event alternative to be uncertain. These properties 
are modeled using a probability mass function (PMF). 

By default, separate probabilistic events are assumed not to 
be compatible, meaning they are part of a distribution of 
possible alternative interpretations of the user’s input. For 
example a “move” and a “gesture” resulting from the same 
underlying touch would be incompatible with each other 
(only one interpretation is correct). However, certain events 
represent parallel but independent (compatible) actions by 
the user. An example is simultaneous touches by two 
different fingers in a multi-touch system.    

Dispatching Probabilistic Input 
Figure 3 illustrates our system’s sample-based dispatch 
process. Instead of dispatching an uncertain event directly 
as in [18] (and thus forcing interactor developers to directly 
handle uncertain events), our dispatch method samples the 
probabilistic event. Each event sample is weighted 
according to the estimated probability that this sample 
represents a correct interpretation of the user’s actual intent. 
The dispatch mechanism then dispatches each (definite) 
event sample to each appropriate interactor in an interface. 
The events are dispatched in a dispatch order defined by the 
normal interactor structure (e.g., by performing hit tests, 
using the current input focus, “bubbling” events, etc.). 

To reflect the uncertainty about which interactor should 
consume each event sample, we break each event sample 
into multiple samples representing a distribution across the 
interactors they might be delivered to as follows: when each 
event sample is dispatched to an interactor, i, it is split into 
two new samples. One split sample represents the 
possibility that the original sample should be dispatched to i 
(with probability pi). The other split sample represents the 
possibility that the original sample should not be dispatched 
to i (weighted with probability (1- pi). The value of pi, 
represents the probability that the event sample is consumed 
by the interactor i. This consumption probability is the sum 
of the probabilities of all action requests made by i. The 
second split sample is dispatched to the next interactor in 
the dispatch order and split again using the same algorithm. 
This continues until all interactors have seen the sample, or 
the sample probability reaches zero. 
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State Machine Description 
State machines are a convenient mechanism for modeling 
interactive state. Prior tools have introduced augmentations 
to make state machines more practical and easy to use (e.g., 
[9, 16, 19]). In our system, interactor developers specify 
interactor behavior with a simple XML description. This 
description encodes an augmented form of a familiar 
deterministic finite state machine. We have added a small 
set of state variables and corresponding transition 
predicates. These variables can be used along with event 
properties in the transition predicates to help decide 
whether a transition should be taken. For instance, in a 
multi touch interface, the current pointer ID can be modeled 
as a state variable. A transition predicate can then ensure 
that an interaction starts and ends with the same pointer ID 
by comparing the current event sample’s touch ID to the 
touch ID stored in the pointer ID state variable at the start 
of the interaction. 

By definition, every state machine has a start state. Our 
framework extends this notion by allowing multiple states 
to be designated as stable states (always including the start 
state). Stable states may represent the start of a new 
interaction. For example, a conventional check box might 
have two stable states, one for its checked state and one for 
its unchecked state. This allows our framework to roll the 
state machine back to the last sensible (stable) state when a 
possible interaction is rejected. For each stable state, the 
developer can optionally provide code for initializing or 
resetting the variables of the machine to correspond to that 
state. 

Figure 2 illustrates a state machine in a graphical notation. 
Each node represents a state, while directed edges between 
nodes represent transitions. Edges (transitions) are 
annotated with the notation  type:predicate {optional 
parameters} to describe the type of input to transition on, a 
predicate function which must be satisfied to take the 
transition, an optional update function which updates state 
variables when a transition is taken, and optional feedback 
or actions functions to execute when taking the transition.  

Feedback and action functions are encapsulated as feedback 
and final action request samples to be executed if/when the  
requests get accepted. An action request sample 
encapsulates a method to carry out the action, along with a 
likelihood score, links to the event and state samples that 
led to that action being created. This gives the action’s 
method access to state variables and event properties that 
may be needed to carry out the action.   

Neither predicate nor state update functions may have side 
effects in the application. The update function may modify 
state variables only. Note that this state machine 
specification is deterministic: It could be used unchanged in 
a standard non-probabilistic input handling framework.  

State Machine Operation 
When an interactor receives an input event during the 
dispatch process, it must correctly update its internal state 

and produce actions based on this input. In a deterministic 
setting, as each event arrives, an interactor’s state would be 
updated to a new (deterministic) state based on the type of 
the input event. In the case of our augmented state machine, 
the predicate function would also need to return true for a 
transition to be taken. Additionally, all of the methods 
associated with the selected transition (feedback, state 
variable update, and action) would be executed.  

In the case of probabilistic input, interactor state is a 
probability distribution over multiple possible states rather 
than a single current state. Our framework uses a collection 
of weighted state samples to track this state distribution. 
Each state sample contains a current state and a collection 
of values for the state machine variables. Together, these 
characterize a (deterministic) sample “state” of the state 
machine. When a (deterministic) event sample arrives, the 
state sample contains sufficient information to transition to 
a new state. As illustrated in Figure 4, this process produces 
a new state sample containing the new machine state and a 
new set of state variable values (as produced by the 
developer specified update function for the transition). If 
the developer has specified a feedback function or an action 
function for the transition, one or more action samples are 
produced. Each action sample is assigned a probability 
(weight) defined as pes * pss, where pes is the probability 
associated with the event sample (a combination of 
occurrence and dispatch likelihood) and pss is the 
probability that the state machine is actually in the state 
indicated by the state sample.  

Each event sample is combined with every state sample in a 
given interactor to determine its probabilistic transitions. 
The set of new state samples produced after all event 
samples are processed represents the new distribution of 
interactor state. Action samples are accumulated across all 
transitions resulting from samples of a given probabilistic 
event. The set of action samples produced by each 
interactor represents the distribution across potential actions 
that interactor could invoke (as implied by the transition 
from the old state distribution to the new state distribution). 

Mediation – Choosing Between Alternate Actions 
Once dispatch of all the samples generated from a set of 
compatible probabilistic events is complete, we will have 
produced a set of one or more competing action samples. 

 

Figure 4:  Our framework takes a state machine 
description, a state sample, and an event sample, and 
executes the appropriate transition of the state 
machine. The result is a new state sample and (in 
some cases) a final and/or feedback action request 
sample.  
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The mediation process decides which action samples to 
accept and invoke.  

As mentioned in the overview, there are two types of action 
samples: feedback actions and final actions. Feedback 
actions are assumed to be transient and reversible. They 
provide information to the user, but do not change the 
future behavior of the system. An example is showing 
visually how a gesture is being interpreted. Final actions are 
assumed to have irreversible consequences which may 
change external objects in the application or the way the 
system acts in the future. An example is adding or 
removing an application component as a result of a 
completed gesture. 

Since feedback actions are reversible and do not change the 
future behavior of the system, they are by default assumed 
to be compatible with each other (meaning that more than 
one of them can safely be invoked together). This has the 
benefit of indicating to the end user that ambiguity is 
present, as in Figure 1 where a circle and a faded second 
house are both visible. In the case of the faded house, the 
feedback action has translated its likelihood (weight) into 
an alpha value for the feedback image being drawn. The 
assumption that all feedback actions are compatible with 
one another is useful but does not always hold. For 
example, in the case of a pannable, paintable canvas, the 
feedback for panning may cause the feedback for the paint 
to be distorted or to disappear. Feedback independence is an 
assumption of the default feedback currently provided, but 
is not a fundamental limitation of our approach. We plan to 
build more sophisticated feedback aggregation mechanisms 
that combine conflicting feedback in future work.  

Final actions on the other hand would normally be 
incompatible with other actions.  However, they may be 
compatible if they represent interpretations of the user input 
and resulting state that do not conflict with each other. An 
example of this is input coming from two different users, 
two different devices, or even just two different fingers 
acting independently on a multi-touch device. In that case 
the resulting actions do not conflict and may be executed 
together.  To handle this more general case, action requests 
each have an isCompatible() method which by default 
returns true only if the action requests come from different 
interactors and the probabilistic events which cause the 
action are compatible (as indicated by their isCompatible() 
methods). This allows inputs involving e.g., multiple 
devices or users to be handled correctly with minimal 
developer intervention.  Additionally, the developer may 
override isCompatible() to handle more complex situations. 

Before mediation can begin, action aggregation must take 
place. The event sampling, dispatch, and state tracking 
processes will often produce a number of action samples 
that invoke the same feedback or final action method. These 
samples, however, may vary in the sampled values found 
within the particular state and event samples they depend 
on. For example, two actions associated with the same 

gesture may contain different samplings of the user’s touch 
location.  However, these action samples might logically be 
considered equivalent. Our framework aggregates such 
samples into one aggregated action request. 

Although this can be overridden by the developer, our 
current implementation of action aggregation provides a 
default aggregation strategy that combines equivalent 
actions. Equivalent actions both encapsulate the same 
method (meaning they execute the same operation if 
invoked), and are associated with transitions within the 
same interactor’s state machine. The combined action is 
assigned a weight that is the sum of all of the individual 
actions it is based on. More sophisticated custom strategies 
might, for example, only consider actions to be similar 
enough if certain state variables are within a limited 
variation of each other or might even perform a simple 
clustering of action samples based on state variable values. 

The result of action aggregation is a collection of 
aggregated action request samples (each of which links 
back to the full set of action samples they aggregate over so 
that no information is lost).  The next step in mediation is to 
form sets of incompatible action requests.  These are 
requests that cannot logically be executed together because 
they each represent a decision to commit to different 
interpretations of input and resulting state that are in 
conflict with each other.   

Since these aggregated actions cannot all be executed, the 
mediation system must decide to accept zero or more 
aggregated actions in each set of incompatible action 
requests. All remaining actions in the set are either rejected, 
or if the system cannot yet make a final decision deferred. 
When an action is deferred, the mediator typically seeks 
more information from the user.  

Although algorithms for deciding between actions are not 
the main focus of this work (and of course many options 
exist [10]), we will briefly describe the default mediation 
algorithm used in our examples. Each incompatibility group 
is handled separately as follows: First, the algorithm rejects 
requests below some developer-specified minimum 
probability. Next, if there are only feedback requests left, 
all feedback actions are accepted. Otherwise, the algorithm 
selects a threshold equal to the most probable final action in 
the current incompatible group. It then considers all final 
actions requests with likelihood within a developer-
specified delta of that threshold. If there is one final action 
within delta of the threshold, that action is accepted and all 
other actions are rejected. If there are multiple final actions 
within delta of the threshold, the interaction is considered 
“too close to call”. In this case, the mediator rejects all 
actions below the delta, defers the final actions within the 
delta, and rejects any feedback actions within the delta. For 
deferral it invokes a developer specified mediation method. 
The default version of this method displays an “N-best list” 
choice dialog to the user (a common approach as described 
in [10]). Alternatively, the developer can specify a different 
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method. Once the user designates a choice, the other 
possibilities are rejected and the chosen action is accepted. 

Carrying Out Actions 
The result of mediation is a list of action requests to be 
accepted and a list to be rejected. All accepted final action 
requests are executed as indicated in the action request.  At 
present, feedback actions are treated the same way. As 
shown in Figure 1, small changes in how an interactor is 
drawn (transparency, shadow, etc.) or simple indicators 
(such as the current most likely gesture) are easily 
distinguishable and work well even in a complex 
application. In future work we envision a feedback merger 
step which might use negotiation techniques, related to 
those developed for fluid documents [3], to produce more 
sophisticated, flexible feedback of ambiguity.  This would 
allow feedback to scale up to even more complex situations.   

When an accepted feedback or final action request is 
invoked, it is passed a copy of the aggregated action request 
object as a parameter.  This aggregated request contains 
links to all of the original action requests it was aggregated 
from, which in turn link to the set of event and state 
samples (including state variables and event properties) 
causing the transitions which led to those actions. The 
system provides an extensible library of value aggregators 
such as average, median, and most-probable, which allow 
the action method to quickly establish definite values for all 
the values it needs to carry out its function.  

State Update and Resampling 
Once actions have been executed, we update interactive 
state to reflect the logical consequences that this implies. 
Acceptance and execution of a set of feedback actions does 
not require any state adjustment. However, acceptance and 
execution of a final action represents a decision to commit 
to a particular interpretation of input, associated with a 
particular state machine state. As a result, we need to adjust 
the state distributions to reflect this decision. For each 
interactor executing one or more accepted final actions, the 
mediator ensures that its state is consistent with those 
actions. Since each action arises from a transition, the target 
states of those transitions are consistent with the 
interpretation of the user’s input that has been selected. All 
state samples not matching one of the target states of the 
aggregated accepted actions are deleted.   

For interactors which have rejected actions but no accepted 
actions it is necessary to reset the interactor state to one that 
would be consistent with rejecting all current 
interpretations.  This is done by resetting each state sample 
in the machine – specifically by restoring it to the last stable 
state it passed through during its execution history (each 
sample maintains a record of this state). Resetting sets the 
state sample state number to the stable state and executes a 
reset method to establish consistent state variable values.  
Restoring the state samples makes the state distribution 
compatible with where the state distribution would have 
been if the rejected input sequence had never happened. 

The final step that must be taken is resampling to reduce 
the total sample count. If left unchecked, over time the 
number of state samples will grow exponentially. This 
increase occurs each time multiple event samples arrive and 
are combined with each transitioning state sample. 
However, state distributions can generally be adequately 
approximated by a limited number of samples. We 
resample and renormalize the state distribution based on a 
developer specified limit of total samples.  

In our current implementation (on a memory and CPU 
limited mobile phone) we enforce a fairly small sample 
budget. To stay within this budget, we use an aggregation 
process to combine similar samples. In systems allowing a 
more generous sample budget an alternative approach 
would be to employ importance sampling as is commonly 
used with particle filters [6, 12] (which have the same state 
expansion issues).  Once resampling is complete we 
renormalize the weights of the states in each interactor’s 
state machine so that they again sum to 1.0. 

IMPLEMENTATION 
We implemented a proof of concept system that uses the 
sampling techniques described above to accurately track 
interactive state. Our system is built for the Windows Phone 
OS on top of the XNA game framework, which has a 
primitive input handling system supporting only polling for 
input but not events. We chose the phone because touch 
input is a widely-used medium that contains a large amount 
of uncertainty (i.e., the intended location of the touch event 
is uncertain). The phone also illustrates that our approach 
works on systems with relatively low amounts of memory 
and processing power. We support touch, gesture, and 
accelerometer-based shake events. The framework has 
about 2,000 lines of C# code, and the 10 demos we wrote 
(some of which are described below) totaled about 1,000 
lines of C# code. Our development and testing has been 
done on a phone with 512MB of RAM and a 1GHz 
processor, which compared to typical modern desktop or 
laptop machines is quite limited.  Due to these limitations, 
our example application implementation employed a very 
limited sample budget: using at most 50 samples per event 
and resampling to 10 state samples per interactor. These 
values can of course be changed by the developer 
depending on the interface/application. In practice we ran 
into no problems using these low sample numbers because 
of the small state machine size that most interactors have. 
Fortunately, even for unusual cases needing very large state 
machines, our approach is highly parallelizable, offering 
plenty of room for future optimizations.  

Once details such as the number of samples are specified, 
developers rarely have to think probabilistically when they 
are developing interactors and applications that use these 
interactors. Aside from feedback methods that make use of 
likelihood, neither the interactor code nor the application 
code we developed involves explicit consideration of 
multiple possible interpretations of the user’s input.  

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

241



 

 

EXAMPLE USES 
To test the effectiveness of our approach and demonstrate 
its applicability to a wide range of problems, we developed 
six interactors of varying complexity. We combined them 
in a gesture-based paint application.  Please refer to the 
accompanying video figure to see the application in action. 

Below we briefly highlight the implementation of several 
interactors we built to show what developers should expect 
when writing interactors. Although developers have access 
to probabilistic data (aggregated action requests and their 
associated events and state samples), they rarely need to 
concern themselves with this information. All of our 
example interactors were written largely without regard to 
probabilistic events (an exception is feedback designed to 
indicate the probability of a specific potential action).  The 
paint application using the interactors is written entirely 
without regard to uncertain events, and is a relatively 
simple application consisting of roughly 400 lines of code 
with the same setup code and logic as any standard paint 
application.  

Stamps: Moveable Buttons 
Our paint application allows users to stamp images onto 
their painting. To support this we developed an interactor 
which can be both moved and pressed. The stamp interactor 
uses three states to accomplish this. Figure 2 illustrates the 
state machine description used for stamps. The state 
machine has two state variables – the drag start position and 
the touch ID (to support multitouch). Stamps provide 
feedback to indicate the likelihood that they are being 
pressed vs. moved. Stamps provide press feedback by 
manipulating the shadow to make the interactor appear 
depressed in proportion to the likelihood that they are 
pressed (Figure 5, left). To provide feedback about moving, 
stamps show a ‘ghost’ version of the moved stamp. The 

transparency of the ghost stamp is based on the stamp’s 
move likelihood (Figure 5, right). Sometimes multiple 
stamps might be selected or moved ambiguously (because 
the initial touch overlapped both interactors). To 
accommodate this, each stamp uses an alpha value 
corresponding to its move likelihood, which helps the user 
to see what the system thinks is happening (Figure 5, right). 
This has the advantage that the user can back out of an 
incorrect interpretation before any final actions are invoked 
(by moving the stamp away from and then back to its 
original position). Importantly, we do not explicitly support 
this escape mechanism: it is a natural solution that arises 
from an understanding that dragging and pressing are both 
possible. Move far enough and a drag is more likely, move 
back and you can let go without fear of an incorrect stamp. 

The specific feedback used by the stamp class is different 
for different transitions. However, all of them use 
likelihood as a drawing parameter (for shadow size, 
transparency, etc.). Outside of this parameter, the stamp has 
no other code that uses probabilities.  

Resizable Box: Context-Dependent Interaction 
Our system allows developers to create resizeable 
interactors that use direction of motion to differentiate 
between a resize action and other input such as a gesture or 
moving another interactor which may be underneath. To 
facilitate such interactions in previous work [18] required 
manually tracking the probability in each state. Our 
framework simplifies this drastically. The developer simply 
writes two predicates – one to check whether the current 
event is horizontally related to the original touch down 
(stored as a state variable), and the other to check whether 
the current event is vertically related to the original touch 
down. Once these predicates are associated with the 
appropriate transitions (from the middle and right state in 
Figure 6, respectively), the interactor will behave properly. 
As with stamps, feedback depicts probability using 
transparency in a ‘ghost’ view of the resize result.  

Canvas: Handling Paint and Gesture Simultaneously 
Stamps and resizable boxes demonstrate the impact of 
uncertainty about which exact screen location the user 
intends to touch, what direction the user is moving, what 
interactor is being targeted, and so on. In these examples 
uncertainty arises directly from the properties of individual 
input events. Another source of uncertainty is recognized 
input, as in the case of gesture recognition. This uncertainty 

  

Figure 5: Screenshots of feedback provided by stamp 
interactors.  The dotted circles have been added to 
indicate the position of the user’s finger. (left) Press 
feedback: A: Stamp unpressed. B: Stamp depressed 
completely when press is unambiguous. C: Stamp 
depressed partially when press is ambiguous. (right) 
Move feedback. A: User pressed in between the 
house and tree when beginning their drag, overlapping 
the tree more than the house. B: Both the house and 
tree are shown, with the tree being less transparent 
than the house reflecting overlap difference. 

move:!horiz
{fb:cancel_fb}

move:vert   
{upd:drag_upd,

fb:resize_fb}
horiz 
resize

vert 
resize

start

down:near_x_edge   
{upd:drag_start}

down:near_y_edge   
{upd:drag_start}

move:horiz   
{upd:drag_upd,

fb:resize_fb}

up {act:resize}

move:!vert {fb:cancel_fb}

up {act:resize}

Figure 6: State machine for resizeable interactor. 
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can be especially problematic when the recognizer is 
inaccurate or the gesture set is large.  

Gestures that are prefixes of one another (such as ‘c’, ‘g’ 
and circle gestures) are especially problematic. Many 
applications are designed to avoid common prefixes or 
provide sophisticated feedback (as in the OctoPocus system 
[1]) because of the resulting high degree of ambiguity.  

Our framework handles this sort of uncertainty without 
requiring any special effort by the developer. By default, 
the recognizer is called repeatedly after each new input 
event (e.g., touch_move) arrives. Each time, it generates a 
probabilistic gesture event which contains a distribution 
specifying the probability that each possible gesture is the 
correct interpretation. During event sampling, this event is 
divided into event samples for individual gestures (i.e., a 
circle gesture, a ‘c’ gesture, etc.), weighted by likelihood.  

We developed a canvas interactor for our paint application 
that handles both ‘moving’ (for painting) and gesture 
events. Figure 8 shows the gestures the canvas recognizes. 
The canvas interactor has 9 states (one for each recognized 
gesture as well as a start and moving state), and 37 
transitions. Figure 9 illustrates a partial state machine for 
this interactor, which includes only a ‘c’ gesture and 
painting. The rest of the state machine is similar in form to 
what is in Figure 9.  The canvas provides feedback about 
the canvas state (paint and interpreted gestures) using 
transparency. Figure 7 illustrates what happens when the 
user paints an 8 shape on the canvas. Because 8 shares a 
common prefix with ‘c’ and ‘circle’, the top hypothesis 
shifts from ‘c’ to ‘circle’ to painting on the canvas as the 
user draws.  

Because the canvas provides visual feedback about the top 
recognized gestures, the user can change her gesture in real 
time to disambiguate. The feedback also allows the user to 
know when her gesture is ‘good enough’ to be interpreted, 
or (if she intends to paint something that looks like a 
gesture) the user can “cancel” recognition without affecting 
the intended drawing by reversing direction and retracing 
part of the drawing before lifting the finger.  

Developers working in a conventional input handling 
framework could certainly implement this canvas, however 
they would need to track not only the gesture probabilities, 
but also would need to include logic to determine when to 
decide whether the user is painting or gesturing. In our 
framework, the developer handles all of this simply by 
including both gestures and raw down/move/up events on 
transitions in the canvas’s state machine. The underlying 
system handles all logic relating to tracking probabilities 
and deciding between paint and gesture events.  

Beyond Touch: Accelerometer-based interaction 
Although all of the input discussed so far is based on touch, 
our framework is not limited to touch. Any probabilistic 
event can be handled using the same mechanisms. For 
example, a shake event can be modeled with probability 
based on the vigor of the shake. We have built a recognizer 
that generates probabilistic shake events from 
accelerometer readings. We built a shake interactor which 
takes these shake events, provides feedback about the shake 
vigor and executes actions when shake events are above a 
developer-specified threshold.  

Putting it all together 
Each of these interactors is interesting individually, but the 
interactions become even more interesting when the 
interactors are combined in an application.  

In addition to ambiguity about touch location and gesture, 
for any user action it is always unclear whether a user 
intends to paint on the canvas, execute a gesture, click on a 
button, or move a stamp. The success of the paint 
application hinges on its ability to manage multiple 
alternative interpretations across multiple interactors for as 
long as possible (i.e., until the user lifts his/her finger). The 
framework we developed ensures that the application gives 
appropriate feedback about each possible action to the user. 
When the user lifts her finger, the framework acts 
appropriately (either resolving input when the resulting 
action is clear or prompting the user to disambiguate). No 
changes are required to the interactors described above for 
this to happen: Thanks to our framework, this complex 
application simply works.  

 

Figure 7:  Screenshots of the canvas interactor as user 
draws a figure 8. Dotted line indicates finger location. 
(left) Initially a ‘c’ gesture is most likely (probability 
0.47). Feedback indicates that c is the most likely 
interpretation, though a circle is possible. (middle) The 
system becomes confident that the gesture is a circle, 
reflecting this in feedback (also evident in state 
distribution). (right) As the user completes the figure 8, 
the canvas believes the user is painting and removes all 
gesture feedback. 

 
Figure 8:  Gestures recognized by the canvas. 

 
Figure 9: Partial state machine for the canvas interactor. 
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Consider the situation when the user intends to do a circle 
gesture but accidentally selects a stamp (Figure 1). This 
demonstrates uncertainty about the touch target (canvas or 
stamp), type (gesture or drag) and location. Since both 
possible targets process the input during dispatch, both the 
canvas and stamp will show feedback based on how likely 
each corresponding action is. The user continues the circle 
gesture and releases when she sees that the system will 
correctly interpret her results. If instead the user 
accidentally draws a circle when she intends to move the 
stamp, she could simply move her finger back and forth so 
that the circle gesture is no longer recognized.  

The framework’s support for tracking the compatibility of 
actions easily supports multitouch. As with any multi-touch 
interface, each interactor must include logic to make sure 
that it responds only to touch events that have the correct 
touch ID. For example, in our implementation, multiple 
stamps may be moved simultaneously, and any number of 
simultaneous fingers may be painting on the canvas. 
Because touch events with different IDs are considered 
compatible, our framework handles all logic for accepting 
and canceling events correctly. 

The power of our framework is clear when all of these 
interactors are combined together. While it might be 
feasible to write these interactors individually using a 
conventional input framework, writing an application that 
correctly handles uncertainty across interactors would be 
extremely difficult, and not reusable. Our framework 
provides a general method for handling uncertain input, 
tracking interactive state and resolving ambiguous actions. 

CONCLUSIONS AND FUTURE WORK 
The arrival of new recognition-based input technologies 
requires that applications handle input with uncertainty. 
This presents new challenges for developers. Our 
framework supports managing interactive state, feedback 
and action without requiring developers to think 
probabilistically. Our contribution greatly simplifies the 
task of developing interactors that handle uncertain input, 
and brings us one step closer to developing an end-to-end 
toolkit for handling uncertain input.  

The examples in the previous sections represent 
illustrations of the complex interactors that our system can 
accurately support including touch, gesture, and 
accelerometer input. In the future we hope to expand this 
library of interactors to make use of additional forms of 
uncertain inputs. Although our example feedback methods 
(e.g., changing the transparency of various drawn objects) 
are effective, they only begin to explore the space of 
possible feedback for ambiguity. Future work will also 
consider more complex approaches to feedback.  

ACKNOWLEDGEMENTS 
This work was funded in part by grants IIS-0713509, IIS-
0803733, and IIS-0840766 and a Graduate Research Fellowship 
from the National Science Foundation, by a grant from the Center 
for Future Work at Heinz College, CMU, a grant from the Intel 
Research Council, and an ARCS Foundation Fellowship. 

REFERENCES 
1. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.  “A 

tutorial on particle filters for on-line nonlinear/non-Gaussian 
Bayesian tracking,” IEEE Trans. on Signal Proc. 50(2), 16-17, 
2002. 

2. Bau, O., Mackay, W. “OctoPocus: a dynamic guide for 
learning gesture-based command sets.” in Proc. UIST 2008, 
37-46. 

3. Bourguet, M. L. “A Toolkit for Creating and Testing 
Multimodal Interface Designs.” Posters and Demos from 
UIST‘02, Paris, Oct. 2002, 29-30. 

4. Chang, B.-W., Mackinlay, J.D., Zellweger,P.T., and Igarashi, 
T. A negotiation architecture for fluid documents. in Proc. 
UIST '98, 123-132. 

5. Dumas, B., Lalannel, D., Guinard, D., Koenig, R., and Ingold, 
R. “Strengths and weaknesses of software architectures for the 
rapid creation of tangible and multimodal interfaces.” in Proc. 
TEI 2008, 47-54. 

6. Dumas, B., Lalannel, D., Oviatt, S. “Multimodal Interfaces: A 
Survey of Principles, Models and Frameworks.” Human 
Machine Interaction. vol. 5440, 3–26, 2009. 

7. Gordon, N. J., Salmond, D. J., Smith, A. F. M. “Novel 
approach to nonlinear/non-Gaussian Bayesian state 
estimation”. IEEE Proc. F on Radar and Signal Proc. 
140(2):107–113.  

8. Grover, D., King, M., Kushler, C., “Reduced keyboard 
disambiguating computer.” U.S. Patent 5818437, Oct. 6, 1998. 

9. Hudson, S. E., Newell, G. L. “Probabilistic state machines: 
dialog management for inputs with uncertainty.” in Proc. UIST 
1992, 199-208. 

10. Jacob, R., Deligiannidis, L, Morrison, S. “A software model 
and specification language for non-WIMP user interfaces.” 
TOCHI 6(1):1-46, 1999. 

11. Mankoff, J., Hudson, S. E., Abowd, G. D. “Interaction 
techniques for ambiguity resolution in recognition-based 
interfaces.” in Proc. UIST 2000, 11 – 20. 

12. Mankoff, J., Hudson, S. E., Abowd, G. D. “Providing 
integrated toolkit-level support for ambiguity in recognition-
based interfaces.” in Proc. CHI 2000, 368-375. 

13. Metropolis, N., Ulam, S. “The Monte Carlo Method”. J. of the 
American Statistical Association 44(247):335–341, 1949. 

14. Myers, B., and Kosbie, and Kosbie, D. “Reusable hierarchical 
command objects.” in Proc. CHI 1996, 260-267. 

15. Odell, J. “The use of context in large vocabulary speech 
recognition.” PhD thesis, Univ. of Cambridge, England, 1995.  

16. Olsen, D. “Propositional production systems for dialog 
description.” in Proc. CHI 1990, 57-64. 

17. Oviatt, S. “Ten myths of multimodal interaction.” 
CACM 42(11):74–81, 1999. 

18. Schwarz, J., Hudson, S., Mankoff, J. “A Framework for 
Robust and Flexible Handling of Inputs with Uncertainty.” in 
Proc. UIST 2010, 47-56. 

19. Wasserman, A.I. “Extending State Transition Diagrams for the 
Specification of Human-Computer Interaction.” IEEE Trans. 
Software Engineering. 11(8):699-713, 1985. 

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

244




