

Monte Carlo Methods for Managing Interactive State,
Action and Feedback Under Uncertainty

Julia Schwarz1 Jennifer Mankoff1 Scott E. Hudson1,2

1Human-Computer Interaction Institute & 2Heinz College Center for the Future of Work
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

{julia.schwarz, jmankoff, scott.hudson}@cs.cmu.edu

ABSTRACT
Current input handling systems provide effective techniques
for modeling, tracking, interpreting, and acting on user
input. However, new interaction technologies violate the
standard assumption that input is certain. Touch, speech
recognition, gestural input, and sensors for context often
produce uncertain estimates of user inputs. Current systems
tend to remove uncertainty early on. However, information
available in the user interface and application can help to
resolve uncertainty more appropriately for the end user.

This paper presents a set of techniques for tracking the state
of interactive objects in the presence of uncertain inputs.
These techniques use a Monte Carlo approach to maintain a
probabilistically accurate description of the user interface
that can be used to make informed choices about actions.
Samples are used to approximate the distribution of
possible inputs, possible interactor states that result from
inputs, and possible actions (callbacks and feedback)
interactors may execute. Because each sample is certain, the
developer can specify most of the behavior of interactors in
a familiar, non-probabilistic fashion. This approach retains
all the advantages of maintaining information about
uncertainty while minimizing the need for the developer to
work in probabilistic terms. We present a working
implementation of our framework and illustrate the power
of these techniques within a paint program that includes
three different kinds of uncertain input.

ACM Classification: H.5.2 [Information interfaces and
presentation]: User Interfaces - Graphical user interfaces.
General terms: Human Factors
Keywords: Probabilistic Modeling, Uncertain Input, Dialog
Specification, Finite State Machines.

INTRODUCTION
Advances in input methods such as touch, pen gestures, in-
air interaction and speech recognition have begun to turn
the promise of natural user interfaces into reality.
Unfortunately, these input modalities are inherently

uncertain. Most interface toolkits assume that input
occurred exactly as reported. As a result, any uncertainty in
input must be resolved quickly and often simplistically. For
example, traditional input systems often treat touch input as
a single point (the centroid of the touch region) instead of a
touch area. Because the center of the touch area may not be
over the user’s intended target, small differences in position
can lead to big errors and a stunted user experience.

Handling uncertain input is a multifaceted problem that
includes mechanisms for modeling uncertain input,
deciding which interactive element(s) an input gets
dispatched to, interpreting input with respect to interactive
state, and mediating between alternative interpretations to
decide which actions to execute and/or feedback to show.
Past work has focused on mechanisms for modeling and
dispatching uncertain input [18] and resolving uncertainty
[11]. In this paper, we focus on how to interpret uncertain
input with respect to interactor state and on giving
appropriate feedback to accurately reflect this uncertainty.

Because user input takes place over the course of a
sequence of events, interactors must be able maintain
internal state across the delivery of events. State machines
are a convenient mechanism for modeling state that many
interactors use implicitly, if not explicitly.

We show how to automate the process of tracking uncertain
state for each interactor, while requiring developers to only
provide a deterministic state machine description. A
developer also specifies when an interactor should provide
feedback or invoke callbacks, but must encapsulate these
actions in action requests rather than executing them
directly. These small changes allow the framework to
automatically track the probabilities of multiple alternative
interactive states as inputs arrive, and correctly update state
as decisions are made about alternative actions.

MONTE CARLO APPROACH
Our approach uses Monte Carlo methods [13]. Monte Carlo
methods span a range of specific techniques but share the
property that probability distributions are approximated by
a set of samples over that distribution. This allows
operations on the distributions to be approximated by
carrying out the operations on each sample, without an
analytical characterization of the operations. We use this
property to transform the operations of conventional event

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16–19, 2011, Santa Barbara, CA, USA.
Copyright © 2011 ACM 978-1-4503-0716-1/11/10... $10.00.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

235

handling from a definite computation into the equivalent
operations working on probability distributions. Our system
uses samples to approximate uncertain probability
distributions in three places: input events, interactor state,
and potential actions. When we combine (definite) event
samples with (definite) state samples, we can compute
(definite) action samples representing potential actions the
interface may take. All of this is handled by applying
conventional event handling operations to individual
(definite) samples. Uncertainty only needs to be considered
where specialized feedback of ambiguity is desired or a
decision between alternative actions must be made. Note
that unlike some Monte Carlo techniques, our approach is
not performing simulation. Rather, live user input is used to
track the probabilities associated with ongoing interactions.
Additionally, our implementation does not use knowledge
about prior distributions of input, state, or action, though
our framework does not preclude this.

MOTIVATING EXAMPLE
To concretely illustrate our contribution, consider the
gesture-based painting program shown in Figure 1 and
implemented using our framework. In the scenario depicted
here, the user executes a circle gesture on a paintable
canvas, but happens to starts the gesture over a moveable
icon (a ‘house stamp’). The canvas in this example
responds to seven different gestures, each represented as a
state in its state machine. These are listed in Figure 1 as
‘circle’, which creates a new stamp, through ‘help’ (see
Figure 8 for a full list of gestures and their resulting
actions). The canvas’ state machine also tracks whether the
user is painting on the canvas (the ‘moving’ state). The
moveable icon in Figure 1 (the ‘house stamp’) can either be
moved (‘moving’ state, see Figure 2) or clicked on, which
copies an image of the stamp to the canvas (‘down’ state).
When the stamp is dragged, it updates its position (which
can be modeled as a state variable) after each move event.
As the user is executing the circle gesture, the framework
simultaneously tracks the possibility that the house stamp is
‘moving’ (indicating a possible drag), that the user is

drawing on the canvas, and that the canvas is receiving a
gesture. No irreversible changes are made because it is
unclear which state is correct. Initially, the likelihood that
the icon is in the moving state is high (Figure 1, left). As
the user continues, the likelihood of executing a ‘c’ gesture,
and moving the house stamp are approximately the same,
and this uncertainty is reflected in the feedback (Figure 1,
middle). As the user finishes the gesture, the likelihood that
the icon is in the moving state decreases and the likelihood
that the user is making a circle gesture increases to 0.87
(Figure 1, right), causing the circle feedback to be most
salient, and the stamp drag feedback to disappear. Our tool
automatically tracks these probabilities for the developer,
allowing her to focus on other aspects of interaction.

RELATED WORK
Past tools for managing uncertainty fall into two categories.
One set of tools has sophisticated support for merging input
from multiple uncertain modalities. Bourguet developed a
tool for visually specifying how multimodal input should be
interpreted using state machines [2] while xml-based
languages have been used to specify the relationship
between incoming event triggers and outgoing actions [5].
In each case, the specification focuses on the flow of
interaction through an overall dialog with the user, as
opposed to the details of how each individual interactor
operates (e.g., [4]). By combining modalities, it has been
shown in multiple domains that it is possible to gain new
evidence for disambiguating the interpretation of uncertain
input (e.g., text input [7], speech [15], and multimodal input
[17]). This research typically assumes that all of the
uncertainty will be resolved before any input reaches a
specific interactor (or the application proper). As a result,
the uncertainty does not integrate smoothly with our well
evolved and familiar GUI interaction techniques.

Another approach (the one taken here) attempts to manage
uncertain input within a general model which is based on
mainstream approaches for input handling. In prior work
we have explored several of the sub problems of modeling
and dispatching uncertain events (input modeling, dispatch,
action, feedback and mediation) [18]. Mankoff et al. outline
basic aspects of modeling input and provide a mechanism

Figure 2: The state machine used by the house stamp.
Each transition is annotated with type:predicate
{optional parameters}. Type is the event the transition
fires on, the predicate checks for any additional
requirements. Optional parameters include upd (an
update method for updating state variables), fb (a
feedback method for displaying feedback to the user),
and act (an action method).

Figure 1: Screenshots from application built using our
system. (left) User starts a circle gesture over a
moveable icon (dotted circle indicates touch location).
(middle) User begins the circle gesture. The system
indicates a possible drag and a possible C gesture as
equally likely. (right) User completes circle gesture.
The system recognizes the circle as the most likely
interpretation. Note: The state probability information at
the left is for illustration and is not part of the interface.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

236

for dispatching and mediating ambiguous input [10, 11].
However, little work has explored managing interactive
state. Hudson and Newell address this problem in [8],
outlining a theoretical approach for tracking interactive
state given uncertain input. However, this approach is not
fully integrated with other aspects of input handling and has
not been implemented. Moreover, the approach discussed in
[8] restricts computational power to strict regular languages
and thus may present difficulties in practical use. This paper
builds directly on ideas in [8, 10, 11, 18].

In the next section we present an overview of our
framework, focusing on the main contributions in this
paper: our approach to tracking and managing uncertain
state within interactors, without requiring interactor
developers to think probabilistically. The framework we’ve
designed uses the concepts introduced in [18] as a starting
point and expands on issues concerning state maintenance.
As validation we then briefly describe our implementation
and a set of sample interactors we built using probabilistic
state machines. Our examples illustrate the power of our
framework, which brings us one step closer to developing
an end-to-end system for handling uncertain input.

FRAMEWORK OVERVIEW
As illustrated in Figure 3 the overall framework we operate
in has six components, each of which includes multiple
steps. (1) First is modeling uncertain input (which produces
many event samples). (2) As shown at top of Figure 3, these
samples are dispatched to interactors. (3) Next, the
framework tracks the internal state of interactors (Figure 3,
bottom left). (4) This produces action/feedback requests. (5)
Mediation aggregates and selects among these requests
(bottom right). (6) Finally, a state update process ensures
that interactor state correctly reflects the fact that certain
actions were selected over others.

Modeling: As with conventional input, uncertain input is
modeled using events. However, these events may be
probabilistic in nature, and may contain probabilistic

properties. In the example in Figure 1, the user’s input is
modeled as a set of alternative events (including gesture
and touch events). The gesture events are represented as a
distribution over possible gestures (circle, t, x, c, g, b, and
help) and the location of touch events is represented as a
distribution over possible x, y positions (in this case derived
from the touch centroid using a 2d Gaussian function).

Dispatch: Given a representation of uncertain input, the
framework needs to deliver, or dispatch, that input to
interested interactors. Details about user input such as its
type and location are traditionally used during dispatch to
make decisions about which interactors should receive each
event. Since this information may be uncertain, our dispatch
process must be probabilistic in nature. To reflect
uncertainty about which interactor will consume an event
sample, the system splits each event sample into several
based on the set of interactors that want to consume it. Each
split sample is weighted based on the probability that it is
consumed. For example, in Figure 1, the user’s input is
modeled using a number of samples (representing possible
locations and gestures). Each of these samples is split in
two (one delivered to the canvas and one to the house
stamp, each weighted with the probability of that dispatch).

Maintaining State: As event samples are delivered, each
interactor needs to maintain its own interactive state. Since
the interactor’s state is based on multiple uncertain prior
inputs, it is probabilistic. The distribution across possible
interactor states is represented as a collection of samples.
Each state sample includes a current state (such as “start” or
“moving”) and values for any variables associated with the
state machine. Operation of a probabilistic state machine
based on these samples is a central focus of this paper and
is described in detail in later sections. Figure 2 shows the
state machine for the house stamp in Figure 1.

Action Request: Each state machine transition may have
an associated action. When an input event sample causes a
transition with an associated action, an action request

Figure 3: Overview of processing steps within the input framework.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

237

sample is generated to request that some action be taken.
Action request samples are conceptually related to
command objects [14] and contain information about the
action, such as a method to carry it out as well as its
likelihood. For example, when the user lifts his finger, the
canvas interactor will transition to a state indicating a
completed circle gesture. This in turn causes an action
request sample to be generated that will create a new stamp
if invoked. Because interactors are uncertain about their
actual state, many possible action samples may be
generated for each uncertain input event that is dispatched.
This collection of action samples represents a probability
distribution across possible actions the system might take.

Actions may have permanent consequences and/or effect
future interactors, or may only produce feedback and not
affect future interactions. We call these two forms of
actions final and feedback actions respectively. For
example in Figure 1, the user’s stroke is shown as feedback,
as is a circle and a semi-transparent indication of the
house’s potential new location. When the user lifts her
finger, both the canvas and stamp send final action samples
to create a house stamp and copy an image to the canvas,
respectively.

Mediation and Action: Mediation is a decision process that
determines which action request samples (if any) to invoke
(accept) and which to reject. In addition to a probability
estimate for each action sample, the system tracks which
requests are compatible with each other, and which are
mutually exclusive, to aid in mediation. Mediation
processes are considered in detail in [11] and we borrow
those approaches as a starting point for the work here.

Our default mediator permits all feedback requests. For
action requests, the mediator selects the most probable
action, which (in the case of Figure 1) creates a new stamp.

State Update: When a final action request is accepted, this
implies that the system has decided to act based on one
interpretation of the inputs. Other interpretations may not
be compatible with this action. The process of state update
removes any state samples which are incompatible with an
accepted action, leaving each interactor’s state machine in a
less ambiguous state. For example, when the circle gesture
is completed and acted upon in Figure 1, all state samples
representing other possible gestures will be removed.

To summarize, our framework takes a probabilistic event,
generates event samples, and dispatches each sample to
various interactors which might receive the input. These
interactors track their state using state samples and generate
potential action samples. The mediation system decides
which (if any) action samples to execute, and interactive
state is updated accordingly. Collectively, these samples
represent a distribution across input events, interactive
state, and action. However, individually these samples can
be treated by developers as deterministic since they each
encapsulate a set of specific values.

MONTE CARLO METHODS FOR MANAGING STATE
AND ACTION UNDER UNCERTAINTY
In this section we discuss the details of the framework
described above. We show how our framework manages
sampled input, state, and actions to accurately track
uncertainty throughout the input handling process.

Modeling Events
As with conventional input, probabilistic input is modeled
using event records. Roughly following the approach in [8],
a distribution across alternative events is indicated by
assigning a weight to each event alternative, reflecting the
probability that this alternative is the true input. Extending
[8] (and following [18]), however, we also allow properties
of each event alternative to be uncertain. These properties
are modeled using a probability mass function (PMF).

By default, separate probabilistic events are assumed not to
be compatible, meaning they are part of a distribution of
possible alternative interpretations of the user’s input. For
example a “move” and a “gesture” resulting from the same
underlying touch would be incompatible with each other
(only one interpretation is correct). However, certain events
represent parallel but independent (compatible) actions by
the user. An example is simultaneous touches by two
different fingers in a multi-touch system.

Dispatching Probabilistic Input
Figure 3 illustrates our system’s sample-based dispatch
process. Instead of dispatching an uncertain event directly
as in [18] (and thus forcing interactor developers to directly
handle uncertain events), our dispatch method samples the
probabilistic event. Each event sample is weighted
according to the estimated probability that this sample
represents a correct interpretation of the user’s actual intent.
The dispatch mechanism then dispatches each (definite)
event sample to each appropriate interactor in an interface.
The events are dispatched in a dispatch order defined by the
normal interactor structure (e.g., by performing hit tests,
using the current input focus, “bubbling” events, etc.).

To reflect the uncertainty about which interactor should
consume each event sample, we break each event sample
into multiple samples representing a distribution across the
interactors they might be delivered to as follows: when each
event sample is dispatched to an interactor, i, it is split into
two new samples. One split sample represents the
possibility that the original sample should be dispatched to i
(with probability pi). The other split sample represents the
possibility that the original sample should not be dispatched
to i (weighted with probability (1- pi). The value of pi,
represents the probability that the event sample is consumed
by the interactor i. This consumption probability is the sum
of the probabilities of all action requests made by i. The
second split sample is dispatched to the next interactor in
the dispatch order and split again using the same algorithm.
This continues until all interactors have seen the sample, or
the sample probability reaches zero.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

238

State Machine Description
State machines are a convenient mechanism for modeling
interactive state. Prior tools have introduced augmentations
to make state machines more practical and easy to use (e.g.,
[9, 16, 19]). In our system, interactor developers specify
interactor behavior with a simple XML description. This
description encodes an augmented form of a familiar
deterministic finite state machine. We have added a small
set of state variables and corresponding transition
predicates. These variables can be used along with event
properties in the transition predicates to help decide
whether a transition should be taken. For instance, in a
multi touch interface, the current pointer ID can be modeled
as a state variable. A transition predicate can then ensure
that an interaction starts and ends with the same pointer ID
by comparing the current event sample’s touch ID to the
touch ID stored in the pointer ID state variable at the start
of the interaction.

By definition, every state machine has a start state. Our
framework extends this notion by allowing multiple states
to be designated as stable states (always including the start
state). Stable states may represent the start of a new
interaction. For example, a conventional check box might
have two stable states, one for its checked state and one for
its unchecked state. This allows our framework to roll the
state machine back to the last sensible (stable) state when a
possible interaction is rejected. For each stable state, the
developer can optionally provide code for initializing or
resetting the variables of the machine to correspond to that
state.

Figure 2 illustrates a state machine in a graphical notation.
Each node represents a state, while directed edges between
nodes represent transitions. Edges (transitions) are
annotated with the notation type:predicate {optional
parameters} to describe the type of input to transition on, a
predicate function which must be satisfied to take the
transition, an optional update function which updates state
variables when a transition is taken, and optional feedback
or actions functions to execute when taking the transition.

Feedback and action functions are encapsulated as feedback
and final action request samples to be executed if/when the
requests get accepted. An action request sample
encapsulates a method to carry out the action, along with a
likelihood score, links to the event and state samples that
led to that action being created. This gives the action’s
method access to state variables and event properties that
may be needed to carry out the action.

Neither predicate nor state update functions may have side
effects in the application. The update function may modify
state variables only. Note that this state machine
specification is deterministic: It could be used unchanged in
a standard non-probabilistic input handling framework.

State Machine Operation
When an interactor receives an input event during the
dispatch process, it must correctly update its internal state

and produce actions based on this input. In a deterministic
setting, as each event arrives, an interactor’s state would be
updated to a new (deterministic) state based on the type of
the input event. In the case of our augmented state machine,
the predicate function would also need to return true for a
transition to be taken. Additionally, all of the methods
associated with the selected transition (feedback, state
variable update, and action) would be executed.

In the case of probabilistic input, interactor state is a
probability distribution over multiple possible states rather
than a single current state. Our framework uses a collection
of weighted state samples to track this state distribution.
Each state sample contains a current state and a collection
of values for the state machine variables. Together, these
characterize a (deterministic) sample “state” of the state
machine. When a (deterministic) event sample arrives, the
state sample contains sufficient information to transition to
a new state. As illustrated in Figure 4, this process produces
a new state sample containing the new machine state and a
new set of state variable values (as produced by the
developer specified update function for the transition). If
the developer has specified a feedback function or an action
function for the transition, one or more action samples are
produced. Each action sample is assigned a probability
(weight) defined as pes * pss, where pes is the probability
associated with the event sample (a combination of
occurrence and dispatch likelihood) and pss is the
probability that the state machine is actually in the state
indicated by the state sample.

Each event sample is combined with every state sample in a
given interactor to determine its probabilistic transitions.
The set of new state samples produced after all event
samples are processed represents the new distribution of
interactor state. Action samples are accumulated across all
transitions resulting from samples of a given probabilistic
event. The set of action samples produced by each
interactor represents the distribution across potential actions
that interactor could invoke (as implied by the transition
from the old state distribution to the new state distribution).

Mediation – Choosing Between Alternate Actions
Once dispatch of all the samples generated from a set of
compatible probabilistic events is complete, we will have
produced a set of one or more competing action samples.

Figure 4: Our framework takes a state machine
description, a state sample, and an event sample, and
executes the appropriate transition of the state
machine. The result is a new state sample and (in
some cases) a final and/or feedback action request
sample.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

239

The mediation process decides which action samples to
accept and invoke.

As mentioned in the overview, there are two types of action
samples: feedback actions and final actions. Feedback
actions are assumed to be transient and reversible. They
provide information to the user, but do not change the
future behavior of the system. An example is showing
visually how a gesture is being interpreted. Final actions are
assumed to have irreversible consequences which may
change external objects in the application or the way the
system acts in the future. An example is adding or
removing an application component as a result of a
completed gesture.

Since feedback actions are reversible and do not change the
future behavior of the system, they are by default assumed
to be compatible with each other (meaning that more than
one of them can safely be invoked together). This has the
benefit of indicating to the end user that ambiguity is
present, as in Figure 1 where a circle and a faded second
house are both visible. In the case of the faded house, the
feedback action has translated its likelihood (weight) into
an alpha value for the feedback image being drawn. The
assumption that all feedback actions are compatible with
one another is useful but does not always hold. For
example, in the case of a pannable, paintable canvas, the
feedback for panning may cause the feedback for the paint
to be distorted or to disappear. Feedback independence is an
assumption of the default feedback currently provided, but
is not a fundamental limitation of our approach. We plan to
build more sophisticated feedback aggregation mechanisms
that combine conflicting feedback in future work.

Final actions on the other hand would normally be
incompatible with other actions. However, they may be
compatible if they represent interpretations of the user input
and resulting state that do not conflict with each other. An
example of this is input coming from two different users,
two different devices, or even just two different fingers
acting independently on a multi-touch device. In that case
the resulting actions do not conflict and may be executed
together. To handle this more general case, action requests
each have an isCompatible() method which by default
returns true only if the action requests come from different
interactors and the probabilistic events which cause the
action are compatible (as indicated by their isCompatible()
methods). This allows inputs involving e.g., multiple
devices or users to be handled correctly with minimal
developer intervention. Additionally, the developer may
override isCompatible() to handle more complex situations.

Before mediation can begin, action aggregation must take
place. The event sampling, dispatch, and state tracking
processes will often produce a number of action samples
that invoke the same feedback or final action method. These
samples, however, may vary in the sampled values found
within the particular state and event samples they depend
on. For example, two actions associated with the same

gesture may contain different samplings of the user’s touch
location. However, these action samples might logically be
considered equivalent. Our framework aggregates such
samples into one aggregated action request.

Although this can be overridden by the developer, our
current implementation of action aggregation provides a
default aggregation strategy that combines equivalent
actions. Equivalent actions both encapsulate the same
method (meaning they execute the same operation if
invoked), and are associated with transitions within the
same interactor’s state machine. The combined action is
assigned a weight that is the sum of all of the individual
actions it is based on. More sophisticated custom strategies
might, for example, only consider actions to be similar
enough if certain state variables are within a limited
variation of each other or might even perform a simple
clustering of action samples based on state variable values.

The result of action aggregation is a collection of
aggregated action request samples (each of which links
back to the full set of action samples they aggregate over so
that no information is lost). The next step in mediation is to
form sets of incompatible action requests. These are
requests that cannot logically be executed together because
they each represent a decision to commit to different
interpretations of input and resulting state that are in
conflict with each other.

Since these aggregated actions cannot all be executed, the
mediation system must decide to accept zero or more
aggregated actions in each set of incompatible action
requests. All remaining actions in the set are either rejected,
or if the system cannot yet make a final decision deferred.
When an action is deferred, the mediator typically seeks
more information from the user.

Although algorithms for deciding between actions are not
the main focus of this work (and of course many options
exist [10]), we will briefly describe the default mediation
algorithm used in our examples. Each incompatibility group
is handled separately as follows: First, the algorithm rejects
requests below some developer-specified minimum
probability. Next, if there are only feedback requests left,
all feedback actions are accepted. Otherwise, the algorithm
selects a threshold equal to the most probable final action in
the current incompatible group. It then considers all final
actions requests with likelihood within a developer-
specified delta of that threshold. If there is one final action
within delta of the threshold, that action is accepted and all
other actions are rejected. If there are multiple final actions
within delta of the threshold, the interaction is considered
“too close to call”. In this case, the mediator rejects all
actions below the delta, defers the final actions within the
delta, and rejects any feedback actions within the delta. For
deferral it invokes a developer specified mediation method.
The default version of this method displays an “N-best list”
choice dialog to the user (a common approach as described
in [10]). Alternatively, the developer can specify a different

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

240

method. Once the user designates a choice, the other
possibilities are rejected and the chosen action is accepted.

Carrying Out Actions
The result of mediation is a list of action requests to be
accepted and a list to be rejected. All accepted final action
requests are executed as indicated in the action request. At
present, feedback actions are treated the same way. As
shown in Figure 1, small changes in how an interactor is
drawn (transparency, shadow, etc.) or simple indicators
(such as the current most likely gesture) are easily
distinguishable and work well even in a complex
application. In future work we envision a feedback merger
step which might use negotiation techniques, related to
those developed for fluid documents [3], to produce more
sophisticated, flexible feedback of ambiguity. This would
allow feedback to scale up to even more complex situations.

When an accepted feedback or final action request is
invoked, it is passed a copy of the aggregated action request
object as a parameter. This aggregated request contains
links to all of the original action requests it was aggregated
from, which in turn link to the set of event and state
samples (including state variables and event properties)
causing the transitions which led to those actions. The
system provides an extensible library of value aggregators
such as average, median, and most-probable, which allow
the action method to quickly establish definite values for all
the values it needs to carry out its function.

State Update and Resampling
Once actions have been executed, we update interactive
state to reflect the logical consequences that this implies.
Acceptance and execution of a set of feedback actions does
not require any state adjustment. However, acceptance and
execution of a final action represents a decision to commit
to a particular interpretation of input, associated with a
particular state machine state. As a result, we need to adjust
the state distributions to reflect this decision. For each
interactor executing one or more accepted final actions, the
mediator ensures that its state is consistent with those
actions. Since each action arises from a transition, the target
states of those transitions are consistent with the
interpretation of the user’s input that has been selected. All
state samples not matching one of the target states of the
aggregated accepted actions are deleted.

For interactors which have rejected actions but no accepted
actions it is necessary to reset the interactor state to one that
would be consistent with rejecting all current
interpretations. This is done by resetting each state sample
in the machine – specifically by restoring it to the last stable
state it passed through during its execution history (each
sample maintains a record of this state). Resetting sets the
state sample state number to the stable state and executes a
reset method to establish consistent state variable values.
Restoring the state samples makes the state distribution
compatible with where the state distribution would have
been if the rejected input sequence had never happened.

The final step that must be taken is resampling to reduce
the total sample count. If left unchecked, over time the
number of state samples will grow exponentially. This
increase occurs each time multiple event samples arrive and
are combined with each transitioning state sample.
However, state distributions can generally be adequately
approximated by a limited number of samples. We
resample and renormalize the state distribution based on a
developer specified limit of total samples.

In our current implementation (on a memory and CPU
limited mobile phone) we enforce a fairly small sample
budget. To stay within this budget, we use an aggregation
process to combine similar samples. In systems allowing a
more generous sample budget an alternative approach
would be to employ importance sampling as is commonly
used with particle filters [6, 12] (which have the same state
expansion issues). Once resampling is complete we
renormalize the weights of the states in each interactor’s
state machine so that they again sum to 1.0.

IMPLEMENTATION
We implemented a proof of concept system that uses the
sampling techniques described above to accurately track
interactive state. Our system is built for the Windows Phone
OS on top of the XNA game framework, which has a
primitive input handling system supporting only polling for
input but not events. We chose the phone because touch
input is a widely-used medium that contains a large amount
of uncertainty (i.e., the intended location of the touch event
is uncertain). The phone also illustrates that our approach
works on systems with relatively low amounts of memory
and processing power. We support touch, gesture, and
accelerometer-based shake events. The framework has
about 2,000 lines of C# code, and the 10 demos we wrote
(some of which are described below) totaled about 1,000
lines of C# code. Our development and testing has been
done on a phone with 512MB of RAM and a 1GHz
processor, which compared to typical modern desktop or
laptop machines is quite limited. Due to these limitations,
our example application implementation employed a very
limited sample budget: using at most 50 samples per event
and resampling to 10 state samples per interactor. These
values can of course be changed by the developer
depending on the interface/application. In practice we ran
into no problems using these low sample numbers because
of the small state machine size that most interactors have.
Fortunately, even for unusual cases needing very large state
machines, our approach is highly parallelizable, offering
plenty of room for future optimizations.

Once details such as the number of samples are specified,
developers rarely have to think probabilistically when they
are developing interactors and applications that use these
interactors. Aside from feedback methods that make use of
likelihood, neither the interactor code nor the application
code we developed involves explicit consideration of
multiple possible interpretations of the user’s input.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

241

EXAMPLE USES
To test the effectiveness of our approach and demonstrate
its applicability to a wide range of problems, we developed
six interactors of varying complexity. We combined them
in a gesture-based paint application. Please refer to the
accompanying video figure to see the application in action.

Below we briefly highlight the implementation of several
interactors we built to show what developers should expect
when writing interactors. Although developers have access
to probabilistic data (aggregated action requests and their
associated events and state samples), they rarely need to
concern themselves with this information. All of our
example interactors were written largely without regard to
probabilistic events (an exception is feedback designed to
indicate the probability of a specific potential action). The
paint application using the interactors is written entirely
without regard to uncertain events, and is a relatively
simple application consisting of roughly 400 lines of code
with the same setup code and logic as any standard paint
application.

Stamps: Moveable Buttons
Our paint application allows users to stamp images onto
their painting. To support this we developed an interactor
which can be both moved and pressed. The stamp interactor
uses three states to accomplish this. Figure 2 illustrates the
state machine description used for stamps. The state
machine has two state variables – the drag start position and
the touch ID (to support multitouch). Stamps provide
feedback to indicate the likelihood that they are being
pressed vs. moved. Stamps provide press feedback by
manipulating the shadow to make the interactor appear
depressed in proportion to the likelihood that they are
pressed (Figure 5, left). To provide feedback about moving,
stamps show a ‘ghost’ version of the moved stamp. The

transparency of the ghost stamp is based on the stamp’s
move likelihood (Figure 5, right). Sometimes multiple
stamps might be selected or moved ambiguously (because
the initial touch overlapped both interactors). To
accommodate this, each stamp uses an alpha value
corresponding to its move likelihood, which helps the user
to see what the system thinks is happening (Figure 5, right).
This has the advantage that the user can back out of an
incorrect interpretation before any final actions are invoked
(by moving the stamp away from and then back to its
original position). Importantly, we do not explicitly support
this escape mechanism: it is a natural solution that arises
from an understanding that dragging and pressing are both
possible. Move far enough and a drag is more likely, move
back and you can let go without fear of an incorrect stamp.

The specific feedback used by the stamp class is different
for different transitions. However, all of them use
likelihood as a drawing parameter (for shadow size,
transparency, etc.). Outside of this parameter, the stamp has
no other code that uses probabilities.

Resizable Box: Context-Dependent Interaction
Our system allows developers to create resizeable
interactors that use direction of motion to differentiate
between a resize action and other input such as a gesture or
moving another interactor which may be underneath. To
facilitate such interactions in previous work [18] required
manually tracking the probability in each state. Our
framework simplifies this drastically. The developer simply
writes two predicates – one to check whether the current
event is horizontally related to the original touch down
(stored as a state variable), and the other to check whether
the current event is vertically related to the original touch
down. Once these predicates are associated with the
appropriate transitions (from the middle and right state in
Figure 6, respectively), the interactor will behave properly.
As with stamps, feedback depicts probability using
transparency in a ‘ghost’ view of the resize result.

Canvas: Handling Paint and Gesture Simultaneously
Stamps and resizable boxes demonstrate the impact of
uncertainty about which exact screen location the user
intends to touch, what direction the user is moving, what
interactor is being targeted, and so on. In these examples
uncertainty arises directly from the properties of individual
input events. Another source of uncertainty is recognized
input, as in the case of gesture recognition. This uncertainty

Figure 5: Screenshots of feedback provided by stamp
interactors. The dotted circles have been added to
indicate the position of the user’s finger. (left) Press
feedback: A: Stamp unpressed. B: Stamp depressed
completely when press is unambiguous. C: Stamp
depressed partially when press is ambiguous. (right)
Move feedback. A: User pressed in between the
house and tree when beginning their drag, overlapping
the tree more than the house. B: Both the house and
tree are shown, with the tree being less transparent
than the house reflecting overlap difference.

move:!horiz
{fb:cancel_fb}

move:vert
{upd:drag_upd,

fb:resize_fb}
horiz
resize

vert
resize

start

down:near_x_edge
{upd:drag_start}

down:near_y_edge
{upd:drag_start}

move:horiz
{upd:drag_upd,

fb:resize_fb}

up {act:resize}

move:!vert {fb:cancel_fb}

up {act:resize}

Figure 6: State machine for resizeable interactor.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

242

can be especially problematic when the recognizer is
inaccurate or the gesture set is large.

Gestures that are prefixes of one another (such as ‘c’, ‘g’
and circle gestures) are especially problematic. Many
applications are designed to avoid common prefixes or
provide sophisticated feedback (as in the OctoPocus system
[1]) because of the resulting high degree of ambiguity.

Our framework handles this sort of uncertainty without
requiring any special effort by the developer. By default,
the recognizer is called repeatedly after each new input
event (e.g., touch_move) arrives. Each time, it generates a
probabilistic gesture event which contains a distribution
specifying the probability that each possible gesture is the
correct interpretation. During event sampling, this event is
divided into event samples for individual gestures (i.e., a
circle gesture, a ‘c’ gesture, etc.), weighted by likelihood.

We developed a canvas interactor for our paint application
that handles both ‘moving’ (for painting) and gesture
events. Figure 8 shows the gestures the canvas recognizes.
The canvas interactor has 9 states (one for each recognized
gesture as well as a start and moving state), and 37
transitions. Figure 9 illustrates a partial state machine for
this interactor, which includes only a ‘c’ gesture and
painting. The rest of the state machine is similar in form to
what is in Figure 9. The canvas provides feedback about
the canvas state (paint and interpreted gestures) using
transparency. Figure 7 illustrates what happens when the
user paints an 8 shape on the canvas. Because 8 shares a
common prefix with ‘c’ and ‘circle’, the top hypothesis
shifts from ‘c’ to ‘circle’ to painting on the canvas as the
user draws.

Because the canvas provides visual feedback about the top
recognized gestures, the user can change her gesture in real
time to disambiguate. The feedback also allows the user to
know when her gesture is ‘good enough’ to be interpreted,
or (if she intends to paint something that looks like a
gesture) the user can “cancel” recognition without affecting
the intended drawing by reversing direction and retracing
part of the drawing before lifting the finger.

Developers working in a conventional input handling
framework could certainly implement this canvas, however
they would need to track not only the gesture probabilities,
but also would need to include logic to determine when to
decide whether the user is painting or gesturing. In our
framework, the developer handles all of this simply by
including both gestures and raw down/move/up events on
transitions in the canvas’s state machine. The underlying
system handles all logic relating to tracking probabilities
and deciding between paint and gesture events.

Beyond Touch: Accelerometer-based interaction
Although all of the input discussed so far is based on touch,
our framework is not limited to touch. Any probabilistic
event can be handled using the same mechanisms. For
example, a shake event can be modeled with probability
based on the vigor of the shake. We have built a recognizer
that generates probabilistic shake events from
accelerometer readings. We built a shake interactor which
takes these shake events, provides feedback about the shake
vigor and executes actions when shake events are above a
developer-specified threshold.

Putting it all together
Each of these interactors is interesting individually, but the
interactions become even more interesting when the
interactors are combined in an application.

In addition to ambiguity about touch location and gesture,
for any user action it is always unclear whether a user
intends to paint on the canvas, execute a gesture, click on a
button, or move a stamp. The success of the paint
application hinges on its ability to manage multiple
alternative interpretations across multiple interactors for as
long as possible (i.e., until the user lifts his/her finger). The
framework we developed ensures that the application gives
appropriate feedback about each possible action to the user.
When the user lifts her finger, the framework acts
appropriately (either resolving input when the resulting
action is clear or prompting the user to disambiguate). No
changes are required to the interactors described above for
this to happen: Thanks to our framework, this complex
application simply works.

Figure 7: Screenshots of the canvas interactor as user
draws a figure 8. Dotted line indicates finger location.
(left) Initially a ‘c’ gesture is most likely (probability
0.47). Feedback indicates that c is the most likely
interpretation, though a circle is possible. (middle) The
system becomes confident that the gesture is a circle,
reflecting this in feedback (also evident in state
distribution). (right) As the user completes the figure 8,
the canvas believes the user is painting and removes all
gesture feedback.

Figure 8: Gestures recognized by the canvas.

Figure 9: Partial state machine for the canvas interactor.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

243

Consider the situation when the user intends to do a circle
gesture but accidentally selects a stamp (Figure 1). This
demonstrates uncertainty about the touch target (canvas or
stamp), type (gesture or drag) and location. Since both
possible targets process the input during dispatch, both the
canvas and stamp will show feedback based on how likely
each corresponding action is. The user continues the circle
gesture and releases when she sees that the system will
correctly interpret her results. If instead the user
accidentally draws a circle when she intends to move the
stamp, she could simply move her finger back and forth so
that the circle gesture is no longer recognized.

The framework’s support for tracking the compatibility of
actions easily supports multitouch. As with any multi-touch
interface, each interactor must include logic to make sure
that it responds only to touch events that have the correct
touch ID. For example, in our implementation, multiple
stamps may be moved simultaneously, and any number of
simultaneous fingers may be painting on the canvas.
Because touch events with different IDs are considered
compatible, our framework handles all logic for accepting
and canceling events correctly.

The power of our framework is clear when all of these
interactors are combined together. While it might be
feasible to write these interactors individually using a
conventional input framework, writing an application that
correctly handles uncertainty across interactors would be
extremely difficult, and not reusable. Our framework
provides a general method for handling uncertain input,
tracking interactive state and resolving ambiguous actions.

CONCLUSIONS AND FUTURE WORK
The arrival of new recognition-based input technologies
requires that applications handle input with uncertainty.
This presents new challenges for developers. Our
framework supports managing interactive state, feedback
and action without requiring developers to think
probabilistically. Our contribution greatly simplifies the
task of developing interactors that handle uncertain input,
and brings us one step closer to developing an end-to-end
toolkit for handling uncertain input.

The examples in the previous sections represent
illustrations of the complex interactors that our system can
accurately support including touch, gesture, and
accelerometer input. In the future we hope to expand this
library of interactors to make use of additional forms of
uncertain inputs. Although our example feedback methods
(e.g., changing the transparency of various drawn objects)
are effective, they only begin to explore the space of
possible feedback for ambiguity. Future work will also
consider more complex approaches to feedback.

ACKNOWLEDGEMENTS
This work was funded in part by grants IIS-0713509, IIS-
0803733, and IIS-0840766 and a Graduate Research Fellowship
from the National Science Foundation, by a grant from the Center
for Future Work at Heinz College, CMU, a grant from the Intel
Research Council, and an ARCS Foundation Fellowship.

REFERENCES
1. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T. “A

tutorial on particle filters for on-line nonlinear/non-Gaussian
Bayesian tracking,” IEEE Trans. on Signal Proc. 50(2), 16-17,
2002.

2. Bau, O., Mackay, W. “OctoPocus: a dynamic guide for
learning gesture-based command sets.” in Proc. UIST 2008,
37-46.

3. Bourguet, M. L. “A Toolkit for Creating and Testing
Multimodal Interface Designs.” Posters and Demos from
UIST‘02, Paris, Oct. 2002, 29-30.

4. Chang, B.-W., Mackinlay, J.D., Zellweger,P.T., and Igarashi,
T. A negotiation architecture for fluid documents. in Proc.
UIST '98, 123-132.

5. Dumas, B., Lalannel, D., Guinard, D., Koenig, R., and Ingold,
R. “Strengths and weaknesses of software architectures for the
rapid creation of tangible and multimodal interfaces.” in Proc.
TEI 2008, 47-54.

6. Dumas, B., Lalannel, D., Oviatt, S. “Multimodal Interfaces: A
Survey of Principles, Models and Frameworks.” Human
Machine Interaction. vol. 5440, 3–26, 2009.

7. Gordon, N. J., Salmond, D. J., Smith, A. F. M. “Novel
approach to nonlinear/non-Gaussian Bayesian state
estimation”. IEEE Proc. F on Radar and Signal Proc.
140(2):107–113.

8. Grover, D., King, M., Kushler, C., “Reduced keyboard
disambiguating computer.” U.S. Patent 5818437, Oct. 6, 1998.

9. Hudson, S. E., Newell, G. L. “Probabilistic state machines:
dialog management for inputs with uncertainty.” in Proc. UIST
1992, 199-208.

10. Jacob, R., Deligiannidis, L, Morrison, S. “A software model
and specification language for non-WIMP user interfaces.”
TOCHI 6(1):1-46, 1999.

11. Mankoff, J., Hudson, S. E., Abowd, G. D. “Interaction
techniques for ambiguity resolution in recognition-based
interfaces.” in Proc. UIST 2000, 11 – 20.

12. Mankoff, J., Hudson, S. E., Abowd, G. D. “Providing
integrated toolkit-level support for ambiguity in recognition-
based interfaces.” in Proc. CHI 2000, 368-375.

13. Metropolis, N., Ulam, S. “The Monte Carlo Method”. J. of the
American Statistical Association 44(247):335–341, 1949.

14. Myers, B., and Kosbie, and Kosbie, D. “Reusable hierarchical
command objects.” in Proc. CHI 1996, 260-267.

15. Odell, J. “The use of context in large vocabulary speech
recognition.” PhD thesis, Univ. of Cambridge, England, 1995.

16. Olsen, D. “Propositional production systems for dialog
description.” in Proc. CHI 1990, 57-64.

17. Oviatt, S. “Ten myths of multimodal interaction.”
CACM 42(11):74–81, 1999.

18. Schwarz, J., Hudson, S., Mankoff, J. “A Framework for
Robust and Flexible Handling of Inputs with Uncertainty.” in
Proc. UIST 2010, 47-56.

19. Wasserman, A.I. “Extending State Transition Diagrams for the
Specification of Human-Computer Interaction.” IEEE Trans.
Software Engineering. 11(8):699-713, 1985.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

244

