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ABSTRACT 
Vision-based interfaces, such as those made popular by the 
Microsoft Kinect, suffer from the Midas Touch problem: 
every user motion can be interpreted as an interaction. In 
response, we developed an algorithm that combines facial 
features, body pose and motion to approximate a user’s 
intention to interact with the system. We show how this can 
be used to determine when to pay attention to a user’s ac-
tions and when to ignore them. To demonstrate the value of 
our approach, we present results from a 30-person lab study 
conducted to compare four engagement algorithms in single 
and multi-user scenarios. We found that combining inten-
tion to interact with a “raise an open hand in front of you” 
gesture yielded the best results. The latter approach offers a 
12% improvement in accuracy and a 20% reduction in time 
to engage over a baseline “wave to engage” gesture current-
ly used on the Xbox 360. 

Author Keywords: Free-space interaction; vision-based 
input; user engagement; input segmentation; learned models 
ACM Classification Keywords: H5.2 [Information inter-
faces and presentation]: User Interfaces - Graphical user 
interfaces. 

INTRODUCTION 
Recent commercialization of skeletal tracking using depth-
sensing cameras holds the promise of bringing free-space, 
gestural interaction into our everyday lives. One common 
property that these free-space interfaces share is that they 
all leverage computer vision to interpret a user’s actions 
(i.e., vision-based interfaces, or ‘VIs’). One challenge these 
VIs present is the Midas Touch Problem: VIs are “always 
on” and therefore everything a user does may be interpreted 
as an interaction [12].  

This paper addresses the question of user engagement: 
determining when a system should pay attention to a user’s 
actions, and when to ignore them. We describe a machine 
learning-based algorithm which combines facial features, 

body pose and body motion to approximate a user’s inten-
tion to interact, and show how this can be used to make VIs 
more robust. 

To better understand the role of gaze, body pose, and ges-
ture in determining intention to interact, we ran a formative 
study to identify a set of non-verbal signals people use to 
communicate intention to interact with vision-based sys-
tems, and then trained a set of binary classifiers to recog-
nize these signals. We then used regression analysis to 
combine these results into an overall intention to interact 
score, estimating the likelihood of a user’s intention to 
interact (Figure 1).  

To illustrate the immediate and practical benefits of using 
our approach, we built a full-body vision-based interface, 
and ran a 30-person lab study comparing four different user 
engagement algorithms in single and multi-user scenarios. 
We compared an approach that used only our intention to 
interact score, and two hybrid approaches that combined the 
intention to interact score with an explicit gesture. Addi-
tionally, we include the “wave to engage” algorithm cur-
rently used on the Xbox 360 as a benchmark.  

Our study results demonstrated that our intention-to-interact 
metric was useful in determining engagement. Further, by 
combining this intention-to-interact metric with an easy-to-
execute gesture yields even better results, offering a 12% 
improvement in accuracy and a 20% reduction in time to 
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Figure 1. Our system combines results from a collection of 

individual classifiers to determine a user’s intention to inter-
act with a vision-based interface. 



 

engage over the baseline “wave to engage” gesture used on 
the Xbox 360.  

Our contributions are twofold. First, we highlight the value 
of incorporating information about a user’s body pose and 
motion when determining intention to interact. Second, we 
show that using an intention-to-interact metric facilitates 
more accurate and faster engagement detection without 
requiring users to execute complicated gestures (a common 
practice today).  

RELATED WORK 
There has been a wide body of work exploring detection of 
user engagement, as well as the related question of user 
attentiveness. These efforts have spanned areas such as 
desktop interfaces, educational systems, games, driver 
analysis, human-robot interaction, and human-computer 
interaction. 

For example, Mota estimates a young learner’s interest 
level by analyzing posture data obtained from a pressure-
sensitive chair. Mota combined neural networks (posture 
detection) and Hidden Markov Models to detect engage-
ment at an overall accuracy of 77% [16]. Smith et al. are 
able to use a single commodity camera to track features 
such as blinks, gaze direction and mouth movement which 
can be used to estimate driver’s attention level [23]. In the 
domain of computer interfaces, Asteriadis [1] shows how to 
perform face detection and tracking to estimate user atten-
tiveness at a computer using only a web camera. Asteriadis 
is able to correctly detect attentiveness for 88% of a set of 
22,000 annotated test frames.  Nakano et al. explore con-
versational attentiveness using gaze transition 3-gram pat-
terns to determine a user’s interest in a conversation. They 
use these insights to develop a multimodal conversational 
agent which asks probing questions when users are about to 
lose interest [17]. Our work extends these findings in two 
ways. First, we address the related question of determining 
user engagement, that is, whether to pay attention to a us-
er’s actions, or to ignore them. Second, we demonstrate the 
value of examining not just the eyes and head but the entire 
body when determining engagement. 

User engagement is important in the domain of human-
robot interaction, since a robot must decide whether to pay 
attention to or ignore a user’s actions. Michalowski et al. 
use a spatial model combined with gaze tracking to deter-
mine user engagement with a robot receptionist [14]. Inter-
estingly, the authors observe that in the process of coding 
the video, they were able to guess a user’s engagement by 
looking at their body motions, suggesting that body motion 
is a valuable cue to consider. Rich et al. expand on 
Michalowski’s work to include linguistic information such 
as conversational adjacency pairs and backchannels in their 
model [20].  

In contrast to human robot-interaction, the question of user 
engagement in single-user desktop interfaces is so trivial 
that it is almost overlooked. When multiple users are pre-

sent in a desktop interface, the problem is more complex. 
One solution is to let each user have control of a finite re-
gion [9,24]. When space is limited, several users can share 
a region [18]. 

In VIs, a user’s body is always tracked. This ‘always on’ 
property brings many challenges [12] as users have no 
natural clutching mechanism [10]. As a result, a person who 
wants to sip a drink in their living room, for example, may 
unintentionally trigger music through an inadvertent ges-
ture. This problem is compounded when multiple users are 
present. When in groups, VIs must know who to pay atten-
tion to and who to ignore.  

Current VIs use a variety of rules to determine when to 
begin and end an interaction. For example, the Kinect 
Dashboard interface on Xbox 360 begins an interaction 
when it sees a hand wave [15], and ends an interaction 
when the user leaves the visible area. Several games (see 
e.g., [8,19]) ask the user to raise one or both hands to begin 
interacting, and end an interaction either at the end of a 
game or when the user leaves the scene. StrikeAPose [26] 
leverages blob tracking to provide a clever “teapot” gesture 
to detect engagement. Unfortunately, relying solely on 
explicit gestures is often inaccurate, time-consuming, and 
not particularly intuitive.  

Predictive models have also been applied to detecting en-
gagement. This research largely relies on facial features and 
gaze tracking to measure interest level. One of the most 
sophisticated examples is the work of Bohus and Horvitz on 
predicting intention to interact [4] in open-world dialogue 
systems [5]. They describe an in-situ model looking at face 
position and orientation, as well as trajectory. This could be 
used to predict intention to interact with a kiosk three se-
conds before an actual interaction with a minimum false 
positive rate of 5%.  

This paper builds off of Bohus et al.’s contribution in two 
primary ways. First, Bohus’ system is primarily intended 
for spoken dialogue with a machine, whereas our model is 
intended for non-verbal interactions. The fact that the inter-
actions are all gesture-based, and not voice- or gaze-based, 
makes the engagement detection problem even more diffi-
cult, as there is no input modality change to serve as an 
additional cue or backup indicator. Second, our intention to 
interact model incorporates body pose and motion, some-
thing Bohus specifically mentions as a potential area of 
future work.  

The use of body pose and motion in determining user’s 
interest level has received additional attention thanks to the 
advent of inexpensive body tracking systems like Kinect 
[13]. Bianchi-Berthouse [3] provide an overview of the role 
of body movement in gameplay, and propose investigating 
changes in body motion to understand how a user is playing 
a game. Further, in [2], Bianchi-Berthouse discuss the rela-
tionship between body movement and interest level in a 
game, and show how this relationship can be leveraged to 



 

use body motion to enhance gaming experience. In [21], 
Sanghvi et al. use body lean angle, slouch factor, quantity 
of motion (computed by looking at pixel-based silhouette 
motion), and body contraction to determine a student’s 
interest level in playing a game with a robot game compan-
ion. Lastly, Kapoor [11] combines facial features, body 
posture and system state information to determine interest 
level in a game.  

Our work builds on top of the aforementioned research by 
illustrating how gaze, body pose, and motion can be used in 
concert in determining a user’s intention to interact with 
vision-based interfaces. Further, we demonstrate the value 
of combining our intention-to-interact metric with explicit 
gestures in determining user engagement. This approach 
offers a new way of thinking about user input: taking ac-
count intention to interact at the system level. This suggests 
that future input systems may benefit from directly incorpo-
rating uncertainty [22] into the dispatch process.  

CHARACTERIZING INTENTION TO INTERACT 
To better understand the role of body pose, motion and 
facial features in determining intention to interact, we ran a 
formative study exploring how people naturally engage 
with others, and how they might engage with a vision-based 
interface. We recruited 16 participants (mean age 25, 2 
female, all Caucasian), none of which has experience with 
VIs.  

Participants stood approximately 2.5m away from a VI 
setup consisting of a depth-sensing camera and 30-inch 
1080p display. First, we asked participants to demonstrate 

how they would get the attention of another person pictured 
on the display. Second, participants demonstrated how they 
would “wake up” the system from a sleeping state using 
gesture, and then pretend to select buttons on a screen (us-
ing gesture). Participants repeated each task five times 
when sitting and standing, and task order was counterbal-
anced.  

We recorded video, depth and skeleton data for each partic-
ipant in our formative study. One of the authors watched 
these videos to find common factors that would indicate 
intention to interact. The following signals were found to be 
relevant (Table 1): 1) user is looking at the screen, 2) user’s 
hands are lifted above the waist, 3) user is waving one or 
both hands, 4) user raises a hand above their head, 5) user’s 
body is facing the screen, and 6) user’s posture is attentive 
(arms are not crossed, hands are far away from the head, at 
least one hand has non-zero velocity). 

One feature (one or more hands lifted above waist) was 
largely due to the type of interaction we were asking users 
to complete, which was pretending to select buttons in an 
interface. Not all interfaces have this requirement, indicat-
ing that any model that focuses on this feature may be over-
specific. This feature, however, can be easily removed in 
the intention-to-interact model to expand the generalizabil-
ity of our result to different VIs. The importance of features 
specific to the interaction at hand should not be understated: 
in practice interaction-specific features are quite important 
to generate robust models.  

COMPUTING AN INTENTION TO INTERACT METRIC 
Based on observations from our formative study, we devel-
oped six binary classifiers to detect the body poses and 
gestures described above.  

Our first classifier – user is looking at camera – was com-
puted using commodity face detection on the video feed 
provided from our camera [25]. The remaining five classifi-
ers (hand is above the waist, hand is lifted above head, 
attentive posture, body facing sensor, and waving) were 
trained using hand-labeled frames from a subset of clips 
gathered during our formative study, as well as clips subse-
quently gathered by the authors.  

We labeled and trained each classifier using Visual Gesture 
Builder, a tool shipped with Microsoft’s Xbox SDK. Visual 
Gesture Builder uses features such as relative joint angles 
and joint motion to learn gesture and body pose classifiers 
using the ADABoost [7] algorithm. Each classifier was 
trained using ADABoost with 1000 weak classifiers; we 
also mirrored joint data to account for a lower rate of left-
handed users. Body poses were labeled irrespective of 
whether the user was actually engaged, and we ignored 
joints below the waist to make classifiers agnostic to 
whether users were standing or sitting. Table 1 shows statis-
tics regarding accuracy of our binary classifiers. Statistics 
are presented based on a set of test clips obtained from a 

 # train 
frames 

# test 
frames 

test accu-
racy 

model 
weight 

Engaged 
stance 

189,778 54,359 93.8% 0.67* 

Hand lifted 
above waist 

53,182 10,037 98.4% 0.15* 

Looking at 
screen 

N/A N/A N/A 0.12* 

Waving 56,634 16,933 92.5% 0.11* 

Hand raised 
above head 

57,344 10,168 92.3% 0.08* 

Body facing 
screen 

54,796 7,296 87.4% -0.05* 

Table 1. Test set accuracy of binary classifiers used in our 
algorithm (train/test data obtained from separate users), as 
well as weights assigned to each classifier in our final com-
putation. Accuracy refers to per-frame accuracy (# of cor-
rect video frames / total # of frames). For example, 98.4% 

in the hand lifted above waist row indicates that this classi-
fier correctly detected the hand lifted above for 98.4% of 
gestures. Because “looking at sensor” used built-in face 
detection algorithm, accuracy numbers are unavailable. 
Weights marked * are statistically significant (effectively 

contributed to estimation), p < 0.05. 



 

subset of users in our formative study (train and test data 
obtained from different users). 

Our intention-to-interact score is a value between zero and 
one (inclusive), representing an estimation of the likelihood 
of a user’s intention to interact. The intention-to-interact 
score is computed using a weighted combination of the six 
classifiers above; the output of each binary classifier is 
treated as a zero or one. We used clips recorded from a pilot 
of our experiment (see below) to get ground truth meas-
urement of engagement for running a regression. 

For each clip we recorded the user’s ground truth engage-
ment as well as output from our classifiers every 30 msec. 
In total we collected 16,893 frames over 13 clips. We then 
ran a linear regression over our features to determine 
weights that best predicted engagement. Feature weights for 
the intention-to-interact model are in Table 1. All features 
significantly contributed to the result estimation (p < 0.05), 
and coefficient of determination (R2) was 0.66. 

We were surprised to see a low weight on hand raised 
above head and a negative weight on body facing sensor. 
We posit that this is because the hand raised above head 
gesture occurred infrequently and that users were almost 
always facing the sensor regardless of whether they were 
interacting or not. Interestingly, body pose – not gaze – had 
the highest weight. This suggests that in the context of VIs 
(where users may be looking at an interface but have no 
intention to interact) body pose is more telling than gaze. 

In our user study, we used a threshold to determine when a 
user transitions from disengaged to engaged, and vice ver-
sa. A final component in development of our engagement 
algorithm was in determining an appropriate threshold: 
when a user engages and when she disengages. 

Figures 2 and 3 illustrate the accuracy tradeoffs of using 
different thresholds to determine engagement. We used the 
same 16,893-frame dataset used in computing classifier 
weights for this analysis. Figure 2 displays curves illustrat-
ing tradeoff between false positives, false negatives, and 
accuracy at different threshold levels, and Figure 3 shows 
an ROC curve comparing accuracy tradeoff of different 
thresholds. Based on this analysis, we determined that a 
threshold between 0.685 and 0.705 offered the highest 
overall per-frame accuracy in determining intention to 
interact of 90%, however as will be seen in future sections, 
this threshold should be adjusted according to the cost of 
false positive and false negative classifications.  

EVALUATION 
To demonstrate the value of our intention-to-interact ap-
proach, we ran a 30-person lab study comparing three dif-
ferent engagement algorithms, both in single and multi-user 
scenarios. As a baseline, we used a direct port of the “wave 
to engage” gesture on the Xbox 360, and compared this 
engagement method to three of our own methods: a proto-
col that used only our intention-to-interact score, and two 
hybrid protocols that combined the intention-to-interact 
score with a gesture. Our experiment focused on testing the 
following hypotheses:  

H1: Making use of the intention-to-interact metric leads to 
higher accuracy when determining user engagement. 

We picked this hypothesis because it tested the overall 
percentage of time that the system correctly interpreted a 
user’s intention to interact (or not) with a system. 

H2: Making use of the intention-to-interact metric reduces 
the number of accidental engagements when compared to 
using only a gesture. 

This hypothesis is useful to test because while overall accu-
racy is important, a key aspect of any VI (and the core 
problem behind Midas touch) is reducing accidental en-
gagement.  

Figure 2. Users transitioned from not engaged to engaged 
when their intention to interact scores reached a threshold. 
This figure illustrates the tradeoff between accuracy, false 
positives, and false negatives at different threshold levels.  

Figure 3. ROC curve for intention to interact model. A’ (area 
under ROC curve) = 0.88. 



 

H3: Making use of the intention-to-interact metric leads to 
faster engagement with the system compared to explicit 
gesture. 

An important consideration regarding the usability of vi-
sion-based systems is the ease and speed with which users 
can begin to use an interface. Therefore, we chose this 
hypothesis to ensure that the intention-to-interact metric, 
while accurate, would better enable users to engage with 
VIs in a timely manner.  

H4: Making use of the intention- to-interact metric leads to 
faster engagement handoff between users. 

Whether in the living room, kitchen or operating room, VIs 
often must determine whom amongst a set of possible users 
to pay attention to. Furthermore, being able to hand off 
system control between users is also important. We chose 
this hypothesis to ensure that our intention-to-interact mod-
el offered improvements in multi user as well as single user 
scenarios. 

System Description 
We built a simple gesture-controlled interface for our study 
using a pre-release version of the Xbox One Kinect. Soft-
ware was implemented in C++ and ran on Windows. We 
used an Xbox One Kinect camera to capture depth images 
and track skeletons; our system ran at 30 frames per second. 

The interface was a simple ‘bop the mole’ game, where 
users need to engage and move a hand-controlled cursor 
over as many targets as possible, then disengage and do 
some secondary task. Our VI was designed to work for 
single and multi-user scenarios. Users could also see a 
small “Picture-in-Picture” (PiP) view of the scene, and get 
feedback about when they were engaged in the PiP. Users 
controlled a body-relative screen cursor, one cursor per 
hand.  

Our system recorded depth and skeleton data, as well as 
results from individual binary classifiers, intention-to-
interact scores, and ground truth engagement as determined 
by the game state. In addition to implementing the classifi-
ers and regression described in the model, we also imple-
mented a direct port of the wave recognizer currently 
shipped on the Xbox 360 to provide a baseline comparison. 

We developed a player engagement protocol to compare 
algorithms. Our protocol assumes at most one engaged 
player at any given moment. Engaged users became disen-
gaged when they satisfied a disengagement criteria. If no 
user was engaged, the player with the highest engagement 
score (above some threshold) became engaged.  

Procedure 
We ran two studies to compare our engagement algorithms 
in different scenarios. The first study was aimed at deter-
mining engagement speed and accuracy for a single player. 
The second study explored a multi-user scenario, specifical-
ly, the time to hand off control to another player. 

We recruited 30 participants for our single person study (3 
female, mean age 32). We used all participants from the 
single person study in addition to 9 more males and 1 fe-
male (mean age 35) for our multi-user study. All partici-
pants were professionals in the IT industry and had moder-
ate to high experience with using the Kinect. Participants 
knew nothing about the internal workings of our algorithm 
and did not participate in gathering of training data. How-
ever, the skewed distribution of participants (mostly male, 
IT professionals) is a limitation of the study. In particular, 
our participants may have had prior experience with trigger-
ing the “wave to engage” gesture, making it more challeng-
ing to demonstrate the benefit of the intention to interact 
score over the baseline. 

The experimental setup was identical for both studies. Par-
ticipants stood or sat in a living-room sized alcove 2.5m 
away from a 65” (165.1cm) display, raised 1.5m from the 
floor. Our Xbox One Kinect camera was located directly 
underneath the display. Figure 1 illustrates our experimental 
setup. The experimenter sat in the alcove with participants, 
giving instructions and moving participants through condi-
tions of the experiment. 

Figure 4 provides an overview of the study procedure. In 
both experiments, participants were asked to repeatedly 
engage with the system and select a series of buttons, then 
disengage from the system. To ensure participants tried to 
engage quickly our game kept a score of the number of 
buttons selected. In both studies, each participant session 
was broken into two blocks, one standing block and one 
sitting block. All conditions were tested in each block. In 
both studies block and condition order was counterbal-
anced. For each condition the experimenter explained the 
engagement method to participants and participants were 
given one minute to practice.  

The experimenter described the wave condition and wave 
combined with score condition as “wave your hand to en-
gage”, the hand lifted combined with score condition as 
“raise your hand and make sure it is open”. During piloting, 
users appeared to be at a loss for what to do in the score 

 
Figure 4. Overview of study design for single user scenario. 

Each user participated in a single session. Condition and 
block order were counterbalanced. The multi-person scenario 
used pairs of participants who were asked to take turns select-

ing buttons with no alternate task.  



 

only condition unless they were given a specific action to 
perform, so we told them to “either raise your hand”, or 
“wave”.  

At the end of each session participants filled out a brief 
questionnaire asking them which engagement method they 
preferred. Condition order was counterbalanced to control 
for order effects. 

Study 1: Single Active Player 
In our first study, we aimed to compare engagement speed 
and accuracy across conditions. Within each block, users 
alternated between selecting buttons on a screen and doing 
some other task. The latter was randomly selected from a 
set of tasks designed to mimic what a user may want to do 
during regular usage. A set of seven alternate tasks were 
picked from an initial expert brainstorming session, and 
then these seven tasks were narrowed down to five tasks 
based on feedback from pilot runs of our study. The tasks 
were: “Talk on your phone”, “Look to the side”, “Cross 
your arms”, “Walk over to and move an object from one 
location to another” and “Browse email on your mobile 
device.” 

For each block, users selected buttons for five seconds, and 
then performed the randomly selected task for five seconds. 
Users were given audio and visual cues to switch tasks. 
Each round was repeated five times. 

Study 2: Multiple Users 
The aim of our second study was to compare time to hand 
off control to another user between conditions. The high 
level procedure of the study is described above. Users par-
ticipated in pairs, giving us a total of 20 pairs. For each 
pair, each user had a designated color, indicated in the PiP 
display. In each block users had to engage and select as 
many of their colored buttons as possible. Button color 
would alternate every five seconds (indicated by a chime). 
Users were penalized in the game if they stayed engaged 
while another person’s buttons were visible, thus motivat-
ing users to disengage as quickly as possible after selection. 
This was repeated 20 times per block. 

Conditions 
For both studies, we compared three engagement algo-
rithms to the baseline wave to engage gesture, resulting in 
four experimental conditions. 

C1: Wave Gesture (control) Our control condition aimed to 
very closely mimic the “wave to engage” interaction cur-
rently shipped on Xbox 360. For this we implemented a 
direct code port of the wave recognizer on Xbox 360. The 
engage criterion for this condition was recognition of the 
Xbox 360 wave gesture, and disengagement occurred 
250ms after both of the user’s hands were below the waist. 

C2: Score only This condition used only our intention-to-
interact score to determine engagement and disengagement. 
The engagement criterion for this condition was based off 
of a smoothed intention-to-interact score. We smoothed the 
intention-to-interact score in our implementation using (for 
simplicity) an exponential smoothing filter [6] with a 
smoothing factor of 0.8, applied every frame. Our smooth-
ing factor was determined from observations during pilot 
runs of the study.  

Users became engaged when their intention-to-interact 
score rose above 0.69. This threshold was found to provide 
a relatively low false positive rate of 10% while maintain-
ing an overall accuracy (on our training dataset) of 95% 
(see Figure 2). Users became disengaged when their inten-
tion-to-interact score dropped below 0.1, which offered a 
nice tradeoff between false positives, true negatives and 
false negatives. 

C3: Score Combined with Wave Gesture Another way to 
reduce false positive engagement is to add an additional 
gesture requirement. The score combined with wave condi-
tion used the same threshold of 0.69, this time with an un-
smoothed score, and also required that the user complete 
the Xbox 360 wave gesture. Users disengaged when their 
unsmoothed intention-to-interact score dropped below 0.1. 

C4: Score Combined With Hand Raised and Open We 
were also curious to see if an easy-to-execute, but error-
prone gesture (“hand raised and open”) could be combined 
with the intention to interact score to create a fast yet accu-
rate engagement protocol. In this condition we required the 
unsmoothed intention-to-interact score to again be above 
0.69 and that at least one of the user’s hands was above the 
waist and open. 

We used a hand state classification algorithm similar to 
what is shipped in the Kinect for Windows SDK v1.7 for 
hand state detection. Disengagement was the same as in C3.  

To verify our intuition that the hand raised and open gesture 
would generate too many false positives to be practical, we 
ran a three-person pilot of the full study described below on 
six runs of three different people (total of 1,785 frames), 
hand labeled these frames according to whether the user 
was engaged with the system, and compared accuracy and 
false positive rates (see Figure 5).  

 
Figure 5. Accuracy and false positive rates comparing a hand 
raised and hand raised & score algorithm from 3-person pilot 

study. Error bars omitted due to insufficient data. 



 

Using just hand up and open had an accuracy and false 
positive rate of 93% and 7% respectively, while the com-
bined model had an accuracy and false positive rate of 98% 
and 0.5%. Results from this preliminary study indicate that 
this simple gesture, while easy and fast, was not accurate 
enough for detection of user engagement, and that an addi-
tional metric such as our intention-to-interact score would 
be necessary to better determine user engagement. 

Data 
During our study, we recorded depth and skeleton data for 
all runs, and recorded binary classifier results, as well as an 
engagement score every 300ms. We were able to automati-
cally determine ground truth because the study interface 
controlled programmatically the user’s engagement state 
(Figure 4). During the study the experimenter made sure 
that users were on task and switched tasks in a timely man-
ner.  

In total, we recorded 1305 clips, representing 191,905 
frames of data, 1,200 engagements, 1,200 disengagements, 
and 3,200 engagement handoffs across the single and mul-
tiple person study. Two users from our single person study 
had corrupt data or failed to complete the study in an atten-
tive manner and were removed from analysis. To ensure 
that all data samples were independent, we performed all 
analysis on a per-user basis. The statistics presented below 
are based on 28 per-user samples in our single person study, 
and 20 per-pair samples in our multiple person study.  

As ground truth we recorded the each user’s expected en-
gagement, based on the task that they were currently doing. 
In the single person study, the ground truth was based on 
whether users were supposed to be performing button selec-
tion or the distractor task (see Figure 4). In the multiple 
person study, the ground truth was based on which user was 
asked to select the buttons. To account for user reaction 
time (the time between when the chime sounds and the user 
actually starts switching tasks), we ignored all data one 
second after a chime in all conditions. In the analyses pre-
sented below, all data were normally distributed, or log 
transformed to become normally distributed. 

Results and Discussion 
Our hypotheses were largely confirmed, with the exception 
of H2, which was partially confirmed. Below we describe 
these results with respect to each specific hypothesis.  

H1: Making use of the intention-to-interact metric leads to 
higher accuracy when determining user engagement. 

Our results indicate that using an intention-to-interact score 
leads to higher accuracy over the baseline wave to engage 
condition. All analyses for this hypothesis were performed 
on data from the single person study. To determine impact 
of condition on overall accuracy, we used several measures.  

First, for each user we measured per-frame accuracy (# 
frames correct / total number frames) after ignoring all 
frames within one second of a chime. This number was 
chosen to ensure that the cutoff was considerably less than 
the fastest possible engagement method. However, this 
metric unfairly biases situations where users are accidental-
ly engaged for a long time (i.e. they fail to disengage). 
Therefore, we also counted the number of accidental en-
gagements and accidental disengagements per user for each 
condition (out of a total of 40 engagements and 40 disen-
gagements per user). Accuracy was computed on a per-user 
basis. Figure 6 shows results comparing overall accuracy, 
while Figure 7 show results comparing number of acci-
dental engagements and accidental disengagements in our 
system.  

Using our engagement score combined with a hand up and 
open gesture yielded the highest per-frame accuracy, at 
92.4%, while wave only was at 82.3%. We log transformed 
our per-frame accuracy to normalize the distribution. A 
repeated measures ANOVA on the log-transformed data 
comparing per-frame accuracy indicated a difference across 
conditions (F (3, 81)=21.68, p < 0.01), and a post-hoc test 
applying Bonferonni correction indicated that the three 
methods leveraging the intention-to-interact score had high-
er mean accuracy than wave only (p < 0.01 in all cases).  

 
Figure 6. Mean of per-frame accuracy across users, single 

person study. Bars represent 95% CI. 

 
Figure 7. Mean number of accidental engagements and 

disengagements per user in single person study. Bars rep-
resent 95% CI. 



 

There are two possible explanations for this difference. 
First, the wave gesture takes a considerable time to engage. 
Also, the disengage condition for our wave only method 
caused a failure to disengage in some cases. This failure to 
disengage was a surprising result, which caused accuracy to 
drop significantly for the wave gesture. To reduce the im-
pact on prolonged failures to disengage, we also counted 
the number of accidental engagements per user in our single 
person session. Figure 7 compares number of per-user acci-
dental engagements and disengagements. A detailed analy-
sis of accidental engagement will be presented in the next 
section. 

One interesting observation is that our intention-to-interact 
score led to more accidental disengagements than using an 
explicit gesture. This is not surprising as our intention-to-
interact metric measures intention to interact, and not inten-
tion to disengage. In future work we suggest developing a 
separate intention to disengage metric to reduce accidental 
disengagement.  

H2: Combining intention-to-interact with an explicit ges-
ture reduces the number of accidental engagements when 
compared to using only an explicit gesture. 

Our study did not show that the combining of a wave ges-
ture with our intention-to-interact score helped reduce acci-
dental engagement (Figure 7, left). One likely reason for 
this is that the wave gesture was already specifically tuned 
to reduce false engagement, at the cost of other factors such 
as engagement speed (see H1). Additionally, the number of 
accidental engagements per user was already very low in all 
conditions, at less than 0.8 false engagements out of 40.  

While the intention-to-interact score did not perform signif-
icantly better than the wave gesture, a post-hoc analysis 
showed that the engagement metric does reduce false en-
gagement when using the raise hand up gesture.  

For our post-hoc analysis, we simulated a “hand up and 
open” engagement gesture by replaying depth and skeleton 
data collected from our study, and this time used hand up 
and open as the engagement criteria, hands dropped as 
disengagement criteria. We recorded binary classifier re-
sults, ground truth, and computed engagement. One record-
ing from our study was thrown out due to corrupt data, 
yielding a total of 27 data points per condition. 

Figure 8 shows results of our post-hoc comparison. A t-test 
indicated that the intention-to-interact score did lead to 
significantly fewer accidental engagements between the 
hand up only condition and the intention-to-interact score 
combined with hand up condition (t (26)=2.62, p < 0.05). 
Specifically, accidental engagement dropped from 0.96 
accidental engagements in the open hand up only condition 
to 0.29, a 70% reduction in accidental engagements. 

H3: Making use of the intention-to-interact metric leads to 
faster engagement with the system compared to explicit 
gesture. 

Analysis of data from our single person study indicates that 
using an intention-to-interact score leads to faster engage-
ment time than the baseline wave to engage gesture. Specif-
ically, average time to engage with wave was about 2.5 
seconds while average time to engage in the score-only 
condition and the score combined with hand up condition 
was about 2 seconds, yielding a 20% reduction in engage-
ment time (Figure 9).  

A repeated-measures ANOVA across all conditions indicat-
ed a statistically significant difference between average 
engagement times (F (3, 81) = 9.66, p < 0.01). Post-hoc 
tests applying Bonferroni correction indicated a statistically 
significant difference in time to engage between using the 
wave gesture and our score only at p < 0.05, as well as a 
difference between wave only and hand up & score (p < 
0.05). The fastest engagement method was obtained using 
intention-to-interact combined with a hand up and open. 

 
Figure 8. Post-hoc comparison of accidental engagements with 

and without an intention to interact score (single person 
study) when using a hand up and open gesture. 

 

 
Figure 9. Mean time to engage, disengage in single person 

study, across users. Bars represent 95% CI. 



 

H4: Using an intention-to-interact score leads to faster 
engagement handoff between players. 

For this analysis, we only used data from our multi-person 
study. Surprisingly, handoff time was slowest in the inten-
tion-to-interact score only condition (Figure 10). We posit 
that this was because time to disengage was quite high in 
the intention-to-interact score only condition (due to 
smoothing of the intention-to-interact score). Since our 
scenario required that the currently engaged user first dis-
engage before another user can take control, a high disen-
gagement time would increase handoff time as well. The 
high disengagement time in our intention-to-interact only 
condition was a result of aggressive smoothing of the inten-
tion-to-interact score. 

Nevertheless, this study once again illustrated the benefits 
of combining the intention-to-interact score with a hand up 
and open gesture. Specifically, we found that handoff time 
in the intention-to-interact score combined with hand up 
condition was significantly lower than handoff time in the 
wave only condition. Time to switch dropped from 2.04 
seconds (wave) to 1.59 seconds, a 22% reduction. A repeat-
ed measures ANOVA confirmed a significant difference 
across conditions (F (3, 57) =28.40, p < 0.01), and post-hoc 
tests using Bonferroni correction confirmed a difference 
between wave only and hand up combined with score at p < 
0.05. Note that the degrees of freedom in this analysis are 
different from previous analyses because we are analyzing 
results from the multiple person study, which had 4 condi-
tions, and 20 pairs of users completing each condition. 

Subjective Gesture Preference 
Questionnaire data collected during both studies showed a 
strong preference for the hand up and open gesture 
compared to the wave gesture (Figure 11). Interestingly, 
people strongly preferred the hand up combined with 
intention-to-interact score condition to the score only 
condition. One explanation for this could be that in the 
score only condition users did not know exactly what they 
should do and thus could not be sure that their actions 
would lead to an engagement. This further speaks to the 
need of always combining an intention-to-interact score 
with some gesture so that users can always know what 
action will trigger engagement. 

Limitations 
Our studies and subsequent analysis demonstrate the benefit 
of using an intention-to-interact metric for determining 
intention to interact with vision-based systems. Neverthe-
less, there are a few limitations we should note.  

Foremost, we smoothed our model score considerably to 
reduce false engagements and disengagements, which 
caused an unusually high disengagement time. However, 
even with aggressive smoothing we were able to show 
benefit over our baseline. Secondly, our baseline engage-
ment, to which we compared, may not be the fastest or most 
accurate method available across all of the research litera-
ture. We chose it primarily because it was an example of a 
commercially available, in-the-wild engagement detection 
algorithm that was highly tuned and tested.  

CONCLUSIONS AND FUTURE WORK 
In this paper, we argue for the inclusion of an intention-to-
interact metric when determining user engagement in vi-
sion-based input systems. We used a collection of binary 
classifiers that looked at a user’s body pose, motion, and 
gaze to approximate the likelihood that a user intends to 
interact with an interface.  

Results from two 30-person lab studies indicate that while 
an intention-to-interact metric by itself is useful, the full 
power of our intention-to-interact score becomes evident 
when combined with an easy-to-execute but error-prone 
activation gesture. Our intention-to-interact metric allows 
vision-based input systems to accurately detect user en-
gagement without requiring overly complex gestures. 

This work opens up several avenues of future work. First, 
our model for intention to interact focuses largely on detect-
ing engagement with the system. However, the model could 
be further improved if we included intention to disengage. 
Second, we have demonstrated the value of using body pose 
and gesture in determining intention to interact, and believe 
that these findings are relevant to other types of vision 
based scenarios, such Human-Robot Interaction and dia-
logue management systems. Finally, the model offers a new 
way of thinking about and segmenting user input: generat-
ing an intention-to-interact score and dispatching user input 
according to this score, suggesting that future input systems 

 
Figure 11. Gesture preference from questionnaire (single 

person study).  

 
Figure 10. Mean time to hand off control in multi-person 

study, across users. Error bars represent 95% CI. 



 

may benefit from directly incorporating uncertainty [22] 
into the dispatch process.  
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